Abstract: An Artificial Intelligence (AI) multi-frame imaging System on Chip (SoC) incorporates in-pixel embedded analog image processing by performing analog image computation within a multi-frame image pixel. In embodiments, each in-pixel processing element includes a photodetector, photodetector control circuitry with at least three analog sub-frame storage elements, analog circuitry configured to process both neighbor-in-space and neighbor-in-time functions for analog data, and a set of north-east-west-south (NEWS) registers, each register interconnected between a unique pair of neighboring in-pixel processing elements to transfer analog data between the pair of neighboring in-pixel processing elements. In embodiments, the in-pixel embedded analog image processing device takes advantage of high parallelism because each pixel has its own processor, and takes advantage of locality of data because all data is located within a pixel or within a neighboring pixel.
Abstract: In various embodiments, the present disclosure provides for reflective materials, articles and methods incorporating a mesh arrangement of multiple, discrete retroreflective canted cube corner reflectors each having generally flat incident surfaces and high transparency, with a geometry and a refractive index ratio sufficiently high enough to produce a high degree of total internal reflection (TIR) that results in anisotropic retroreflectivity.
Abstract: Retroreflective materials and articles are enabled that increase the retroreflectivity of reflective materials or articles for roadway, automotive, and safety purposes by incorporating retroreflective elements that exhibit near-ideal Total Internal Reflection (TIR).
Abstract: Retroreflective materials and articles are enabled that increase the retroreflectivity of reflective materials or articles for roadway, automotive, and safety purposes by incorporating retroreflective elements that exhibit near-ideal Total Internal Reflection (TIR).
Abstract: Various embodiments of a 3D+imaging system include a focal plane array with in-pixel analog storage elements. In embodiments, an analog pixel circuit is disclosed for use with an array of photodetectors for a sub-frame composite imaging system. In embodiments, a composite imaging system is capable of determining per-pixel depth, white point and black point for a sensor and/or a scene that is stationary or in motion. Examples of applications for the 3D+imaging system include advanced imaging for vehicles, as well as for industrial and smart phone imaging. an extended dynamic range imaging technique is used in imaging to reproduce a greater dynamic range of luminosity.
Abstract: A two-layer retroreflective article construction is enabled that produces higher wide-entrance-angle performance for signs and pavement markings. A single-layer overlay is enabled for existing signs and pavement markers that improve their entrance angle performance. Materials used in the construction of an article or an overlay are transparent to radiation in the range of 400 to 1000 nanometers and utilize TIR (total internal reflection). Minimum performance specifications are proposed that extend sign sheeting retroreflectivity specifications to entrance angles of 60 degrees. An innovative traffic sign design is enabled that increases the positioning performance of safety systems and automated navigation systems.
Abstract: Lighting-invariant imaging produces consistent output for all weather conditions and all lighting conditions within a scene. Reflectivity values of objects are produced in real-time, non-real-time, or cloud processing based on radiance values of pixels and objects. Image vectors describing segmented objects are produced, and spatial attributes are added to produce scene vectors for objects. The lighting-invariant system performs object recognition for one or more images of a scene and can be used for both object identification and object motion determination based on vector representations of objects in the scene.
Abstract: A two-layer retroreflective article construction is enabled that produces higher wide-entrance-angle performance for signs and pavement markings. A single-layer overlay is enabled for existing signs and pavement markers that improve their entrance angle performance. Materials used in the construction of an article or an overlay are transparent to radiation in the range of 400 to 1000 nanometers and utilize TIR (total internal reflection). Minimum performance specifications are proposed that extend sign sheeting retroreflectivity specifications to entrance angles of 60 degrees. An innovative traffic sign design is enabled that increases the positioning performance of safety systems and automated navigation systems.