Patents Assigned to Verify Technologies LLC
-
Publication number: 20250076257Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: August 23, 2024Publication date: March 6, 2025Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
-
Publication number: 20240402134Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: August 16, 2024Publication date: December 5, 2024Applicant: Verifi Technologies, LLCInventor: David A. Jack
-
Publication number: 20240393295Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system is capable of producing A-scans, B-scans, and C-scans of the test object and automatically highlighting potential foreign objects within the test object based on the scan data. The system includes a graphical user interface (GUI) capable of displaying a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. In one embodiment, the system includes an artificial intelligence module capable of highlighting foreign objects in order to provide size data, shape data, and/or depth data of the foreign object.Type: ApplicationFiled: August 2, 2024Publication date: November 28, 2024Applicant: Verifi Technologies, LLCInventors: David A. Jack, Nathaniel J. Blackman, Benjamin M. Blandford
-
Publication number: 20240361280Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments distinguish between weave types that exhibit similar planar stiffness behaviors, but produce different failure mechanisms. Individual ply information is then used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence are also determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Applicant: Verifi Technologies, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Publication number: 20240361281Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system distinguishes between weave types that exhibit similar planar stiffness behaviors, but which produce different failure mechanisms. Individual ply information then is used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Applicant: Verifi Technologies, LLCInventors: David A. JACK, John E. FITCH, Theresa VO
-
Publication number: 20240342895Abstract: The present invention is directed to supports for robotic arms, and more specifically to portable, deployable supports for robotic arms for use in nondestructive testing. The robotic arm support of the present invention includes retractable extensions configured to collapse into a robotic arm mount. The extensions include suction cups for attachment, unattachment, and reattachment of the mount to a surface. The robotic arm mount includes a cavity into which a robotic arm is inserted and secured to conduct nondestructive testing of specimens.Type: ApplicationFiled: March 27, 2024Publication date: October 17, 2024Applicant: Verifi Technologies, LLCInventors: Benjamin M. Blandford, Gary Georgeson, Nathaniel J. Blackman
-
Publication number: 20240329008Abstract: A sensor array housing device includes an enclosed couplant housing section between a linear array of transducers or coils and a test object. The linear array is particularly suited for sectoral scanning of a test object. Interior surfaces of the couplant housing section include a plurality of ridges for mitigating the impact of reflected side lobes on scan data. The sensor array housing device includes a plurality of retained articulating balls, configured to allow the sensor array housing device to move omnidirectionally across a surface of the test object.Type: ApplicationFiled: February 29, 2024Publication date: October 3, 2024Applicant: Verifi Technologies, LLCInventors: Benjamin M. Blandford, David A. Jack, Irrtisum Khan, Gary Georgeson, Nathaniel J. Blackman
-
Publication number: 20240329002Abstract: A system is disclosed for detecting and characterizing wrinkles within a test object utilizing ultrasonic non-destructive testing (NDT). The system includes a phased-array ultrasonic probe having multiple elements, wherein the elements of the phased-array are able to be manipulated to change the steering angle relative to the surface of the test object of a focused beam produced by the phrased-array ultrasonic probe. Alternatively, the system is able to include an ultrasonic transducer operable to be physically rotated with respect to the surface of the test object. By changing the steering angle of the probe, the device performs a sectorial scan providing for improved resolution of wrinkles within the test object.Type: ApplicationFiled: March 26, 2024Publication date: October 3, 2024Applicant: Verifi Technologies, LLCInventors: Benjamin M. Blandford, Gary Georgeson, Irrtisum Khan, David A. Jack
-
Publication number: 20240302328Abstract: The present invention is directed to nondestructive testing of objects, and more specifically to a system for nondestructive testing of an object using a robotic arm. The end effector of the robotic arm is equipped with an arrangement of paired, angled transducers and an orthogonal transducer configured to scan an object using multiple wavelengths of ultrasonic sound waves. Multiple scans of a test object are taken as the object is rotated and the scans are then wirelessly transmitted to a user device or a remote server.Type: ApplicationFiled: February 29, 2024Publication date: September 12, 2024Applicant: Verifi Technologies, LLCInventors: Zach King, Paul Hill, Luke Bach, Greg Power, Jesse Georgius, Calvin Bunge, Preston Germain, Kyle Stork, Larry Culbertson, Benjamin M. Blandford, Nathaniel J. Blackman, Gary Georgeson
-
Publication number: 20240288455Abstract: The present invention is directed to a non-destructive testing system including a tablet without modular, interchangeable inspection cards for performing inspections with different end effectors and/or performing different types of inspections with the same end effectors. The modular, interchangeable inspection cards are easily removable and attached to a external rear face of the tablet, or inserted into a port extending into the tablet.Type: ApplicationFiled: February 26, 2024Publication date: August 29, 2024Applicant: Verifi Technologies, LLCInventors: Benjamin M. Blandford, Nathaniel J. Blackman, Gary Georgeson
-
Publication number: 20240085381Abstract: A phased array housing device includes a transducer housing section, including a linear phased array of transducer elements, and a couplant housing section, including one or more couplants. The linear phased array is able to translate across the length of the transducer housing section to simulate the results of a two-dimensional matrix of transducer elements. Some versions of the linear phased array attach to a pivot point after reaching an end of the transducer housing section such that the linear phased array is able to rotate and scan in a second direction.Type: ApplicationFiled: September 11, 2023Publication date: March 14, 2024Applicant: Verifi Technologies, LLCInventors: Benjamin M. Blandford, Nathaniel J. Blackman, Gary Georgeson
-
Publication number: 20240044845Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: October 9, 2023Publication date: February 8, 2024Applicant: Verifi Technologies, LLCInventors: Trevor Fleck, Khaled Matalgah, Daniel Pulipati, Pruthul Kokkada Ravindranath, David A. Jack
-
Publication number: 20230408453Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as an air pocket, delamination, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting foreign objects within the 3-D image in real time or near real time and providing data regarding each object area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: August 9, 2023Publication date: December 21, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
-
Publication number: 20230400377Abstract: The present invention is directed to an apparatus including a first central base attached to a second central base, connected by a bridge, with a space defined between the two central bases. The first central base and the second central base are each attached to a plurality of wheels extending into the space between the two central bases, with the plurality of wheels configured to translate the apparatus along a rotorcraft blade. The first central base and/or the second central base include a recess configured to receive a connection arm attached to a non-destructive scanning device. The apparatus is able to be used for ultrasonic, radiographic, eddy current, thermographic, acoustic, or visual non-destructive testing.Type: ApplicationFiled: June 12, 2023Publication date: December 14, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Gary Georgeson
-
Publication number: 20230358708Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: June 21, 2023Publication date: November 9, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
-
Publication number: 20230288373Abstract: A system and method for determining fiber orientation within a layered composite using an eddy current probe is discussed. The eddy current probe includes an array of coils that are excited such that an effective pole of the end effector of the probe moves in a ring pattern. The eddy current probe is moved across the surface of a part such that a two-dimensional scan of the part is generated, analogous to a C-scan in ultrasonic testing. The eddy current probe is able to be used to determine the fiber orientation of a layered composite material by scanning at a single point on the material. The eddy current data is able to be fused with data from an ultrasonic transducer to produce a comprehensive view of the part.Type: ApplicationFiled: February 24, 2023Publication date: September 14, 2023Applicant: Verifi Technologies, LLCInventors: Ian Gravagne, David A. Jack, Benjamin M. Blandford, Matthew Newton, Gary Georgeson, Tonoy Chowdhury
-
Publication number: 20230280310Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: May 12, 2023Publication date: September 7, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, William Minnie, Benjamin M. Blandford
-
Publication number: 20230280312Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: May 12, 2023Publication date: September 7, 2023Applicant: Verifi Technologies, LLCInventor: David A. Jack
-
Publication number: 20230251228Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: April 13, 2023Publication date: August 10, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
-
Publication number: 20230236153Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: March 30, 2023Publication date: July 27, 2023Applicant: Verifi Technologies, LLCInventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman