Abstract: A hermetic package having connectors, such as optical fibers or electrical leads, connected and bonded thereto with a bonding material such as epoxy resin, has the bonding material coated with a single layer or multiple layers of sealing material, such as chromium, copper, gold, tungsten, titanium, nickel, or aluminum, to prevent outgased material from the bonding material from entering the hermetic package enclosure. The bonding material may be recessed prior to coating of the sealing material to permit the sealing material to be polished from the optical element and the optical element polished flush with the inside of the package while leaving the sealing material covering the bonding material.
Abstract: Alignment of an array of N elements, such as optical fibers, within a preselected tolerance value is obtained using a primary substrate with a plurality of N apertures extending therethrough from a first surface to a second opposing surface. Each aperture, at its narrowest point, has a cross-section that is greater than a cross-section of an element to be inserted therethrough. Each of the elements passes through its corresponding aperture and rests against the same corresponding point and/or sidewall of the aperture so as to result in the desired alignment. A directing arrangement directs the elements toward the primary substrate at a predetermined angle to cause a spring-like action to occur in each of the elements when threaded through its associated aperture for aligning the elements to engage the same corresponding point and/or sidewall of the aperture.
Abstract: Preselected alignment of an array of N optical fibers is obtained using a relatively thick primary substrate with a thin layer mounted thereon. The primary substrate has a sufficient structure to support an array of N spaced-apart optical fibers passing therethrough. The primary substrate has first and second opposing surfaces and defines a plurality of N primary substrate apertures which each extend therethrough from the first surface to the second surface and have a cross-section which is greater than a cross-section of an optical fiber such that one of the N optical fibers can be inserted through each of the N primary substrate apertures. The layer is metal, is relatively thin, and engages one of the first and second opposing surfaces of the primary substrate, and defines N layer apertures therethrough. Centers of the layer apertures are aligned to a preselected tolerance value which is required for the array of elements.