Abstract: The present invention tracks provenance (people, place, time, permissions, machine characterization and identification) for an off-chain digital asset, provides data verifiability and enforces least privileged access within a single organization or across multiple organizations via a combination of Blockchain and communication agents to enable data assured operations in a normal operating environment and Logistics Under Attack (LUA) environment. The present invention creates data assurance for a digital asset across networks and within environments as it tracks provenance of the digital asset at rest or in motion allowing a data file to move directly from the originator to a customer at the point of use or point of origin to point of use and all points in between in a prescribed or random flow.
Abstract: A method of blockchain tokenization of aircraft and other complex machinery includes creating a series of nesting Blockchain Smart Contracts (BSC) or Blockchain Nonfungible Tokens (BNFT) to digitally twin the complete structure of an aircraft or other complex machines, and collect data from the series of nesting BSC or BNFT through the full product life cycle. Each BSC or BNFT represents a part of the aircraft or other complex machine, from an individual part level (Xp) to a component level (Xc) to a subsystem level (Xss) and/or a system level (Xs) to an aircraft or other complex machine level (Xa), in a cascading architecture. The collected data may be used to perform reverse forensics in the case of a part failure or mishap, and/or to track and trace a part of the aircraft or other complex machine.
Abstract: A method is provided to leverage blockchain based data tokenization to randomly tokenize encrypted and nonencrypted data elements within a data set represented in a 3-dimensional form, wherein the tokens are distributed and reordered into the correct position using a key pair match and Verifiable Self Sovereign Identification (VSSI). The key pair and VSSI credentials must be presented in order to distribute the tokenized data elements into the correct 3-dimensional position within the data set upon verification of the match of the key pair and the prescribed VSSI.
Abstract: A system for non-destructive examination of three-dimensional (3D) printed objects includes a muon source directs muon particles at and through the 3D object and a muon detector receives the muon particles from the muon source to produce a muon signal which is representative of the 3D object. A first computing device executes an algorithm to analyze the muon signal. The analysis comprises creating a 3D rendering of the 3D object based upon the muon signal; preparing a physics-based digital model of the 3D object; and comparing the 3D rendered object to the digital model to identify defects within the 3D object. An augmented reality (AR) device and a second computing device may communicate with the first computing device and receive the 3d rendered object and the digital model. This can used on earth, in space, on a moon or asteroid or another planet as muons occur naturally in these environments.
Abstract: A galactic extrusion manufacturing (GEM) system for performing an extrusion process includes an extruder assembly for extruding building material during the extrusion process, and a connection system including a robotic arm-tether-crimper for attachment of the GEM system to space bound vehicles and/or structures in space or on orbit. The extrusion assembly includes an extruder head outfitted with multiple different heads for shaping the building material during the extrusion process, at least one power cartridge, and at least one building material cartridge containing the building material, wherein the power cartridge and the building material cartridge are removable and replaceable. Also provided are a building material cartridge for use with a GEM system or a dispensing control unit (DCU) to perform an extrusion process, and a smart extrusion system including a building material cartridge and a DCU.