Patents Assigned to Verity Instruments, Inc.
  • Patent number: 10365212
    Abstract: The disclosure provides an optical calibration device for in-chamber calibration of optical signals associated with a processing chamber, a characterization system for plasma processing chambers, methods of characterizing plasma processing chambers, and a chamber characterizer. In one example, the optical calibration device includes: (1) an enclosure, (2) an optical source located within the enclosure and configured to provide a source light having a continuous spectrum, and (3) optical shaping elements located within the enclosure and configured to form the source light into a calibrating light that approximates a plasma emission during an operation within the processing chamber.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: July 30, 2019
    Assignee: Verity Instruments, Inc.
    Inventors: Andrew Weeks Kueny, Mike Whelan, Mark Anthony Meloni, John D. Corless, Rick Daignault, Sean Lynes
  • Patent number: 9997325
    Abstract: The present invention is directed to a gas line electron beam exciter, gas line electron beam excitation system and method for exciting a gas using an electron beam exciter. The electron beam exciter generally comprises a variable density electron source for generating a cloud of electrons in an electron chamber and a variable energy electron extractor for accelerating electrons from the electron chamber as an electron beam and into an effluent stream for fluorescing species in the effluent. The electron density of the electron beam is variably controlled by adjusting the excitation power applied to the variable density electron source. The electrons in the electron chamber reside at a reference electrical potential of the chamber, typically near ground electrical potential.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 12, 2018
    Assignees: Verity Instruments, Inc., Board of Regents, The University of Texas System
    Inventors: Jimmy W. Hosch, Matthew J. Goeckner, Mike Whelan, Andrew Weeks Kueny, Kenneth C. Harvey, P.L. Stephan Thamban
  • Patent number: 9842726
    Abstract: A method for monitoring at least one process parameter of a plasma process being performed on a semiconductor wafer, surface or surface and determine arc events occurring within the plasma tool chamber. The method comprises the steps of detecting the modulated light being generated from the plasma sheath during the plasma process; sampling RF voltage and current signals from the RF transmission line; processing the detected modulated light and the RF signals to produce at least one monitor statistic for the plasma process, and process the monitor signal to determine the occurrence of arcing events during the wafer processing.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: December 12, 2017
    Assignee: Verity Instruments, Inc.
    Inventors: Stephen Daniels, Shane Glynn, Felipe Soberon, Paul Maguire
  • Patent number: 9801265
    Abstract: A digital flashlamp controller, a flashlamp control system and a method of controlling a flashlamp bulb employing digital control electronics are provided herein. In one embodiment, the digital flashlamp controller includes: (1) a trigger interface configured to provide firing signals to control a trigger element for a flashlamp bulb and (2) digital electronics configured to generate the firing signals and control multiple pulsing of the flashlamp bulb.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: October 24, 2017
    Assignee: Verity Instruments, Inc.
    Inventors: Larry Arlos Bullock, John D. Corless, Mark Anthony Meloni, Mike Whelan
  • Patent number: 9772226
    Abstract: A referenced and stabilized optical measurement system includes a light source, a plurality of optical elements and optical fiber assemblies and a detector arranged to compensate for the effects of system variation which may affect measurement performance. A non-continuous light source provides a common source light on a common source path. A reference light and a measurement light are derived from the common source light and propagated across separate paths of optically matching optical components in order to produce a common signal variation on both the reference light signal and the measurement light signal. Light paths exposed to air are contained indiscrete volumes for purging gasses from the volumes. Ratios of the reference signal and measurement signal are acquired under various conditions for compensating the measurement signal for system variations.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 26, 2017
    Assignee: Verity Instruments, Inc.
    Inventors: John Douglas Corless, Andrew Weeks Kueny, Mark Anthony Meloni
  • Patent number: 9386241
    Abstract: The present invention is directed to an apparatus, method and software product for enhancing the dynamic range of a CCD sensor without substantially increasing the noise. Initially, the area of a N×M pixel CCD sensor array is subdivided into two regions, a large region having (M?a) pixels in each column for outputting large-amplitude signals with low noise and a smaller region having a pixels in each column for outputting small-amplitude signals with improved dynamic range. At integration time, the CCD is read out one region's rows at a time into the horizontal shift registers by shifting the pixel charges in either a or M?a vertical shifts. The charges in the horizontal shift registers are then shifted out of the horizontal shift registers in N horizontal shifts. Next, the remaining pixels in the region of the CCD are read out into the horizontal shift registers by shifting the pixel charges in the other of a or M?a vertical shifts.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: July 5, 2016
    Assignee: Verity Instruments, Inc.
    Inventor: Andrew Weeks Kueny
  • Patent number: 9383323
    Abstract: A workpiece characterization system for obtaining simultaneous measurement of layer and photoluminescence properties of a workpiece. The workpiece characterization system includes an excitation light and an illumination light each impinging upon a surface of a workpiece whereby the workpiece emits photoluminescent light and encodes light from said illumination source with layer information. The excitation light and the illumination light are generated from a single light source. The light from the single light source is filtered to remove wavelengths of light that correlate to light wavelengths emitted from the workpiece as a result of excitation. Wavelengths that correlate to light reflected from the workpiece that may contain encoded information are not filtered.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 5, 2016
    Assignee: Verity Instruments, Inc.
    Inventors: Mark Anthony Meloni, John Douglas Corless, Andrew Weeks Kueny, Mike Whelan
  • Patent number: 9310250
    Abstract: A flashlamp control system is provided with a capacitor that is statically electrically connected to the high voltage power supply, and a current sensing component is then electrically connected to the static capacitor and digital control electronics to monitor the charge current and/or the discharge current to static capacitor. A dynamically switchable capacitor electrically may also be connected to the high voltage power supply and digital control electronics for isolating the dynamically switchable capacitor from the high voltage power supply based on the monitored charge current and/or discharge current. One or more homogenizing element, comprise of an air gap, diffusing homogenizing element, imaging element, non-imaging element or light pipe homogenizing element, may be disposed in the light path proximate to the flashlamp, such as a multichannel distributor if present, to decrease the coefficient of variation of the optical signal, either temporally and spectrally, or both.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: April 12, 2016
    Assignee: Verity Instruments, Inc.
    Inventors: Larry Arlos Bullock, John D. Corless, Mark Anthony Meloni, Mike Whelan
  • Patent number: 8125633
    Abstract: The present invention is directed to a system and method for radiometric calibration of spectroscopy equipment utilized in fault detection and process monitoring. Initially, a reference spectrograph is calibrated to a local primary standard (a calibrated light source with known spectral intensities and traceable to a reference standard). Other spectrographs are then calibrated from the reference spectrograph rather than the local primary calibration standard. This is accomplished by viewing a light source with both the reference spectrograph and the spectrograph to be calibrated. The output from the spectrograph to be calibrated is compared to the output of the reference spectrograph and then adjusted to match that output. The present calibration process can be performed in two stages, the first with the spectrographs calibrated to the reference spectrograph and then are fine tuned to a narrow band light source at the plasma chamber.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: February 28, 2012
    Assignee: Verity Instruments, Inc.
    Inventors: Mike Whelan, Andrew Weeks Kueny, Kenneth C. Harvey, John Douglas Corless
  • Patent number: 7630859
    Abstract: The present invention is directed to a method and apparatus for reducing the effects of window clouding on a viewport window in a reactive environment. One or more clouded viewport windows are obtained for testing, in which the clouding results from exposure to the reactive environment. The clouding typically appears as a coating film on the test windows. The clouded viewport windows are analyzed for one or more spectral regions having good transmission. The threshold level of light transmission is determined by the particular application in which the window is used. The spectral regions of good transmission are evaluated for their usefulness with a particular algorithm that will use the spectral data in a production environment. Spectral regions that cannot be evaluated using the subject algorithm are eliminated from consideration. Spectral regions that can be evaluated using the subject algorithm and exhibit low absorption are selected for monitoring in the production environment.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: December 8, 2009
    Assignee: Verity Instruments, Inc.
    Inventor: Kenneth C. Harvey
  • Patent number: 7589843
    Abstract: A self referencing heterodyne reflectometer is disclosed which rapidly alternates between a heterodyne reflectometry (HR) mode, in which an HR beam comprised of s- and p-polarized beam components at split angular frequencies of ? and ?+?? is employed, and a self referencing (SR) mode, in which an SR beam comprised of p-polarized beam components at split angular frequencies of ? and ?+?? is employed. Alternatively, in SR operating mode the SR beam is replaced by a p-polarized amplitude modulated (AM) beam, operating at two modulated amplitudes of ? and ?+?? at a single frequency, ??. When the two measurements are made in rapid succession, using an optical chopper switcher, temperature induced noise in the detector is be assumed to be equivalent. Film phase shift information is derived from the measured phase shift ?Ref/film, generated from the HR beam, and the reference phase shift ?Ref/Sub, generated from the SR/AM beam, which are used for calculating film thickness.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 15, 2009
    Assignee: Verity Instruments, Inc.
    Inventors: Arun Ananth Aiyer, Mark A. Meloni
  • Patent number: 7545503
    Abstract: The present invention is directed to a self referencing heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, without the availability of a reference wafer for calibrations. The self referencing heterodyne reflectometer rapidly alternates between a heterodyne reflectometry (HR) mode, in which an HR beam comprised of s- and p-polarized beam components at split angular frequencies of ? and ?+?? is employed, and a self referencing (SR) mode, in which an SR beam comprised of p-polarized beam components at split angular frequencies of ? and ?+?? is employed. When the two measurements are made in rapid succession, temperature induced noise in the detector is be assumed to be the same as for both measurements. A measured phase shift ?Ref/film is generated from the HR beam and a reference phase shift ?Ref/Sub is generated from the SR beam.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: June 9, 2009
    Assignee: Verity Instruments, Inc.
    Inventor: Arun Ananth Aiyer
  • Patent number: 7339682
    Abstract: The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 4, 2008
    Assignee: Verity Instruments, Inc.
    Inventors: Arun Ananth Aiyer, Mark A. Meloni, Kenneth C. Harvey, Andrew Weeks Kueny
  • Publication number: 20060285120
    Abstract: A linearly polarized light comprised of two linearly polarized components, orthogonal to each other and with split optical frequencies, is directed toward a film. A detector receives the beam prior to incidence on the film layer and generates a reference signal. The reflected beam is diffracted into zeroth- and first-order bands, which are then detected by separate detectors; a measurement signal is generated from the zeroth-order beam and a grating signal from the first-order beam. The zeroth-order beam's measurement signal and reference signal are analyzed by a phase detector for a heterodyne phase shift, and an accurate film thickness calculated from this phase shift by knowing a refractive index for the film. Additionally, the zeroth-order beam measurement signal is analyzed with the grating signal by a phase detector for detecting a grating phase shift induced by the grating.
    Type: Application
    Filed: July 10, 2005
    Publication date: December 21, 2006
    Applicant: Verity Instruments, Inc.
    Inventor: Arun Aiyer
  • Publication number: 20060192973
    Abstract: The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results.
    Type: Application
    Filed: February 25, 2005
    Publication date: August 31, 2006
    Applicant: Verity Instruments, Inc.
    Inventors: Arun Aiyer, Mark Meloni, Kenneth Harvey, Andrew Kueny
  • Patent number: 7084979
    Abstract: An optical profilometer apparatus 10 having a stage with a support surface 42 on which a wafer substrate may rest. The wafer stage is capable of moving the wafer in (x, y) or (r, ?) mode to achieve complete wafer scan. Polarized light from a monochromatic source 12 is directed towards the wafer surface 22. Surface profiling is achieved by sensing beam shift on a segmented sensor caused by level/height change at the wafer surface. In preferred embodiment of the profilometer, a single light beam is engineered to propagate in two orthogonal planes of incidence so that it becomes sensitive to height/level change on the wafer while being insensitive to local slope or wafer tilt. In another embodiment, slope of surface feature is measured. By integrating slope over the measurement spot, local feature height is obtained. This is particularly useful when the beam shift due to feature height change is below detection sensitivity.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 1, 2006
    Assignee: Verity Instruments, Inc.
    Inventor: Arun Ananth Aiyer
  • Patent number: 7049156
    Abstract: The present invention is directed to a system, method and software program product for calculating metrological data (e.g. layer thicknesses and depths of recesses and trenches) on a surface or structure, such as a semiconductor wafer. The present method does not require knowledge of the reflectivity or transmissivity of the surface or structure, but only a quantity related to the reflectivity or transmissivity linear transformation needs to be known. Initially, a simplified optical model for the process is constructed using as many parameters as necessary for calculating the surface reflectivity of the discrete regions on the wafer. Reflectivity data are collected from the surface of a wafer using, for instance, in-situ monitoring, and nominal reflectivity is determined from the ratio of the current spectrum to a reference spectrum. The reference spectrum is taken from a reference wafer consisting entirely of a material in which the reflection properties are well characterized.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: May 23, 2006
    Assignee: Verity Instruments, Inc.
    Inventor: Andrew Weeks Kueny
  • Patent number: 6991514
    Abstract: For use with a chemical mechanical polishing apparatus for polishing a semiconductor wafer having a platen, a polishing pad and a wafer carrier, an optical closed-loop control system. In one embodiment, the system includes a plurality of optical probes impacting a corresponding probe window and rigidly mountable through the platen. The system also includes a flash lamp configured to provide light to each of the plurality of optical probes and minimize an exposure time of the light onto the semiconductor wafer, a spectrograph configured to spatially image light received by each of the plurality of optical probes to a common charge-coupled device and produce real-time spectral reflectometry data therefrom. The system further includes a control subsystem configured to analyze the real-time spectral reflectometry data and determine at least one wafer state parameter therefrom, and cause the polishing to be adjusted based upon the at least one wafer state parameter.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 31, 2006
    Assignee: Verity instruments, Inc.
    Inventors: Mark A. Meloni, Andrew W. Kueny
  • Patent number: 6975393
    Abstract: Afterglow spectroscopy allows observing light emission of gaseous species in absence of direct plasma light. This absence avoids the creation of a background spectrum obscuring weak emission from trace species. The invention describes a flowing afterglow version monitoring in-situ the cleanup of vacuum tools during pump/purge cycles. The invention also describes an intermittent afterglow version suitable for trace gas analysis at atmospheric pressure.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: December 13, 2005
    Assignee: Verity Instruments, Inc.
    Inventor: Jacob Mettes
  • Patent number: 6830939
    Abstract: The present invention is directed to a system, method and software product for creating a predictive model of the endpoint of etch processes using Partial Least Squares Discriminant Analysis (PLS-DA). Calibration data is collected from a calibration wafer using optical emission spectroscopy (OES). The data may be non-periodic or periodic with time and periodic signals may be sampled synchronously or non-synchronously. The OES data is arranged in a spectra matrix X having one row for each data sample. The OES data is processed depending upon whether or not it is synchronous. Synchronous data is arranged in an unfolded spectra matrix X having one row for each period of data samples. A previewed endpoint signal is plotted using wavelengths known to exhibit good endpoint characteristics. Regions of stable intensity values in the endpoint plot that are associated with either the etch region or the post-etch region are identified by sample number.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: December 14, 2004
    Assignee: Verity Instruments, Inc.
    Inventors: Kenneth C. Harvey, Jimmy W. Hosch, Neal B. Gallagher, Barry M. Wise