Patents Assigned to VerLASE Technologies LLC
  • Patent number: 10620504
    Abstract: Color-conversion structures for converting input pump light of a color to one or more differing colors. In some embodiments, the color-conversion structure includes a color-conversion (CC) layer having an input-side coating configured to optimize the amount of the pump light reaching the CC layer and to optimize the amount of color-converted light output by the CC layer. In some embodiments, the CC layer has an output-side coating configured to minimize the amount of unconverted pump light output from the CC layer and to maximize the color-converted light output from the CC layer. Various treatment for enhancing the performance of color-converting structures are also disclosed, as are a number of material combinations for quantum-well (QW) based CC layers and alternatives to QW-based CC layers. Also disclosed are light-emitting structures that each include a color-conversion structure made in accordance with the present disclosure, as well as displays composed of such light-emitting structures.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 14, 2020
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20190284473
    Abstract: Color-conversion structures for converting input pump light of a color to one or more differing colors. In some embodiments, the color-conversion structure includes a color-conversion (CC) layer having an input-side coating configured to optimize the amount of the pump light reaching the CC layer and to optimize the amount of color-converted light output by the CC layer. In some embodiments, the CC layer has an output-side coating configured to minimize the amount of unconverted pump light output from the CC layer and to maximize the color-converted light output from the CC layer. Various treatment for enhancing the performance of color-converting structures are also disclosed, as are a number of material combinations for quantum-well (QW) based CC layers and alternatives to QW-based CC layers. Also disclosed are light-emitting structures that each include a color-conversion structure made in accordance with the present disclosure, as well as displays composed of such light-emitting structures.
    Type: Application
    Filed: August 28, 2017
    Publication date: September 19, 2019
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9525150
    Abstract: Optoelectronic devices containing functional elements made from layers liberated from natural and/or fabricated inherently lamellar semiconductor donors. In one embodiment, a donor is provided, a layer is detached from the donor, and the layer is incorporated into an optoelectronic device as a functional element thereof. The thickness of the detached layer is tuned as needed to suit the functionality of the functional element. Examples of functional elements that can be made using detached layers include p-n junctions, Schotkey junctions, PIN junctions, and confinement layers, among others. Examples of optoelectronic devices that can incorporate detached layers include LEDs, laser diodes, MOSFET transistors, and MISFET transistors, among others.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: December 20, 2016
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9431794
    Abstract: Optoelectronic devices, such as light-emitting diodes, laser diodes, image sensors, optical detectors, etc., made by depositing (growing) one or more epitaxial semiconductor layers on a monocrystalline lamellar/layered substrate so that each layer has a wurtzite crystal structure. In some embodiments, the layers are deposited and then one or more lamellas of the starting substrate are removed from the rest of the substrate. In one subset of such embodiments, the removed lamella(s) is/are partially or entirely removed. In other embodiments, one or more lamellas of the starting substrate are removed prior to depositing the one or more wurtzite-crystal-structure-containing layer(s).
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 30, 2016
    Assignee: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9354366
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: May 31, 2016
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9269854
    Abstract: Methods of making optoelectronic devices containing functional elements made from layers liberated from natural and/or fabricated lamellar semiconductor donors. In one embodiment, a donor is provided, a layer is detached from the donor, and the layer is incorporated into an optoelectronic device as a functional element thereof. The thickness of the detached layer is tuned as needed to suit the functionality of the functional element. Examples of functional elements that can be made using detached layers include p-n junctions, Schotkey junctions, PIN junctions, and confinement layers, among others. Examples of optoelectronic devices that can incorporate detached layers include LEDs, laser diodes, MOSFET transistors, and MISFET transistors, among others.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: February 23, 2016
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20150288129
    Abstract: Optical resonator devices and systems enhanced with photoluminescent phosphors and designed and configured to output working light in an edge-emitting fashion at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. The edge-emitting functionality is enabled by providing one or more waveguides that direct light luminesced from the phosphors to one or more edges of the device. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Application
    Filed: November 4, 2013
    Publication date: October 8, 2015
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9035344
    Abstract: Phosphors fabricated from one or more layers of a naturally lamellar or fabricated lamellar semiconductor that is combined with a substrate. One or more of the layers of the lamellar semiconductor are separated from bulk material. The one or more layers are transformed into a phosphor for use with one or more light-emitting devices for the purpose of modifying the light emitted by the light-emitting device(s). Such transformation can be effected in a variety of ways, such as precise thinning or thickening of the removed layer(s) and/or intercalating one or more species of ions into the layer(s) that function as phosphors.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 19, 2015
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9019595
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 28, 2015
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20140367719
    Abstract: Phosphors fabricated from one or more layers of a naturally lamellar or fabricated lamellar semiconductor that is combined with a substrate. One or more of the layers of the lamellar semiconductor are separated from bulk material. The one or more layers are transformed into a phosphor for use with one or more light-emitting devices for the purpose of modifying the light emitted by the light-emitting device(s). Such transformation can be effected in a variety of ways, such as precise thinning or thickening of the removed layer(s) and/or intercalating one or more species of ions into the layer(s) that function as phosphors.
    Type: Application
    Filed: September 11, 2012
    Publication date: December 18, 2014
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 8859412
    Abstract: Optoelectronic devices, such as light-emitting diodes, laser diodes, image sensors, optical detectors, etc., made by depositing (growing) one or more epitaxial semiconductor layers on a monocrystalline lamellar/layered substrate so that each layer has a wurtzite crystal structure. In some embodiments, the layers are deposited and then one or more lamellas of the starting substrate are removed from the rest of the substrate. In one subset of such embodiments, the removed lamella(s) is/are partially or entirely removed. In other embodiments, one or more lamellas of the starting substrate are removed prior to depositing the one or more wurtzite-crystal-structure-containing layer(s).
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 14, 2014
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20140055845
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 27, 2014
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20140024159
    Abstract: Optoelectronic devices, such as light-emitting diodes, laser diodes, image sensors, optical detectors, etc., made by depositing (growing) one or more epitaxial semiconductor layers on a monocrystalline lamellar/layered substrate so that each layer has a wurtzite crystal structure. In some embodiments, the layers are deposited and then one or more lamellas of the starting substrate are removed from the rest of the substrate. In one subset of such embodiments, the removed lamella(s) is/are partially or entirely removed. In other embodiments, one or more lamellas of the starting substrate are removed prior to depositing the one or more wurtzite-crystal-structure-containing layer(s).
    Type: Application
    Filed: February 9, 2012
    Publication date: January 23, 2014
    Applicant: VERLASE TECHNOLOGIES LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20130143336
    Abstract: Methods of making optoelectronic devices containing functional elements made from layers liberated from natural and/or fabricated lamellar semiconductor donors. In one embodiment, a donor is provided, a layer is detached from the donor, and the layer is incorporated into an optoelectronic device as a functional element thereof. The thickness of the detached layer is tuned as needed to suit the functionality of the functional element. Examples of functional elements that can be made using detached layers include p-n junctions, Schotkey junctions, PIN junctions, and confinement layers, among others. Examples of optoelectronic devices that can incorporate detached layers include LEDs, laser diodes, MOSFET transistors, and MISFET transistors, among others.
    Type: Application
    Filed: March 21, 2011
    Publication date: June 6, 2013
    Applicant: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain