Patents Assigned to View, Inc.
  • Patent number: 10234596
    Abstract: Certain aspects pertain to a cloud detector comprising a first detector module directed to a first region of the sky and a second detector module directed to a second region of the sky. Each detector module has a tube enclosing one or more sensing elements. The one or more sensing elements of the first detector module are configured to take weather condition readings from the first region of the sky. The one or more sensing elements of the second detector module are configured to take weather condition readings from the second region of the sky. In one aspect, the cloud detector is configured to detect cloud cover based on these weather condition readings. In some cases, the one or more sensing elements comprise an infrared radiation detector (e.g., thermopile) for measuring infrared radiation intensity and a photosensor element for measuring sunlight intensity.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 19, 2019
    Assignee: View, Inc.
    Inventors: Trevor Frank, Alexander Rumer, Brandon Tinianov, James Fox, Douglas S. Silkwood, Erich R. Klawuhn
  • Patent number: 10228601
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: March 12, 2019
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10221612
    Abstract: Various embodiments herein relate to methods, structures, tools, installation systems, etc. for retrofitting a new electrochromic window in a pre-existing window recess. In many cases, the new electrochromic window is installed parallel to a lite of a pre-existing window, with the resulting structure including the new electrochromic window, the pre-existing window, and a pocket that forms between them. Installation of a new electrochromic window in tandem with a pre-existing window results in many benefits including improved insulation (e.g., due to the presence of the additional air pocket(s) and lite(s)), improved climate control (e.g., due to the ability to control the amount of sunlight entering the building via the electrochromic window), and enhanced aesthetics.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: March 5, 2019
    Assignee: View, Inc.
    Inventors: Daniel Loy Purdy, Ronald M. Parker, Trevor Frank, Scott Schmidt
  • Patent number: 10185197
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 22, 2019
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10180606
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: January 15, 2019
    Assignee: View, Inc.
    Inventors: Dennis Mullins, Trevor Frank, Jason Satern, Travis D. Wilbur, Mark Sawyer
  • Publication number: 20190011793
    Abstract: This disclosure provides configurations, methods of use, and methods of fabrication for a bus bar of an optically switchable device. In one aspect, an apparatus includes a substrate and an optically switchable device disposed on a surface of the substrate. The optically switchable device has a perimeter with at least one corner including a first side, a second side, and a first vertex joining the first side and the second side. A first bus bar and a second bus bar are affixed to the optically switchable device and configured to deliver current and/or voltage for driving switching of the device. The first bus bar is proximate to the corner and includes a first arm and a second arm having a configuration that substantially follows the shape of the first side, the first vertex, and the second side of the corner.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 10, 2019
    Applicant: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan, Kaustubh Nadkarni
  • Patent number: 10175549
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: January 8, 2019
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, David Walter Groechel, Anshu A. Pradhan, Gordon Jack, Disha Mehtani, Robert T. Rozbicki
  • Patent number: 10162240
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: December 25, 2018
    Assignee: View, Inc.
    Inventor: Robert T. Rozbicki
  • Patent number: 10156762
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel tungsten tantalum oxide (NiWTaO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 18, 2018
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10139696
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 27, 2018
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Mark A. Collins, Travis D. Wilbur, Alexander Rumer, Dennis Mullins
  • Patent number: 10139697
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: November 27, 2018
    Assignee: View, Inc.
    Inventors: Travis Wilbur, Stephen C. Brown
  • Patent number: 10125419
    Abstract: Described are methods of fabricating lithium sputter targets, lithium sputter targets, associated handling apparatus, and sputter methods including lithium targets. Various embodiments address adhesion of the lithium metal target to a support structure, avoiding and/or removing passivating coatings formed on the lithium target, uniformity of the lithium target as well as efficient cooling of lithium during sputtering. Target configurations used to compensate for non-uniformities in sputter plasma are described. Modular format lithium tiles and methods of fabrication are described. Rotary lithium sputter targets are also described.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: November 13, 2018
    Assignee: View, Inc.
    Inventors: Martin John Neumann, Que Anh Song Nguyen, Anshu A. Pradhan, Robert T. Rozbicki, Dhairya Shrivastava, Jason Satern, Todd Martin
  • Patent number: 10126622
    Abstract: Transparent conductive coatings are polished using particle slurries in combination with mechanical shearing force, such as a polishing pad. Substrates having transparent conductive coatings that are too rough and/or have too much haze, such that the substrate would not produce a suitable optical device, are polished using methods described herein. The substrate may be tempered prior to, or after, polishing. The polished substrates have low haze and sufficient smoothness to make high-quality optical devices.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: November 13, 2018
    Assignee: View, Inc.
    Inventors: Yashraj Bhatnagar, Robert T. Rozbicki, Rao Mulpuri
  • Patent number: 10120258
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 6, 2018
    Assignee: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan
  • Patent number: 10112258
    Abstract: This disclosure provides apparatus and methods for scribing a substrate. In one aspect, an apparatus includes optics for focusing a scribe beam onto a substrate and a beam focus adjustment mechanism for adjusting the optics. A triangulation-based distance sensor determines a distance between the triangulation-based distance sensor and the substrate, with the triangulation-based distance sensor being positioned at a location offset from the scribe beam. Reflecting elements are positioned to reflect an incident beam from the triangulation-based distance sensor's source to the substrate and then back to the triangulation-based distance sensor's detector. The beam focus adjustment mechanism adjusts the optics based on the distance between the triangulation-based distance sensor and the substrate so that the scribe beam is focused at a desired position on the substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 30, 2018
    Assignee: View, Inc.
    Inventors: Bruce Baxter, Dennis Mullins
  • Patent number: 10114265
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: October 30, 2018
    Assignee: View, Inc.
    Inventors: Fabian Strong, Yashraj Bhatnagar, Abhishek Anant Dixit, Todd Martin, Robert T. Rozbicki
  • Publication number: 20180307110
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 25, 2018
    Applicant: View, Inc.
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Patent number: 10088731
    Abstract: Window units, for example insulating glass units (IGU's), that have at least two panes, each pane having an electrochromic device thereon, are described. Two optical state devices on each pane of a dual-pane window unit provide window units having four optical states. Window units described allow the end user a greater choice of how much light is transmitted through the electrochromic window. Also, by using two or more window panes, each with its own electrochromic device, registered in a window unit, visual defects in any of the individual devices are negated by virtue of the extremely small likelihood that any of the visual defects will align perfectly and thus be observable to the user.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: October 2, 2018
    Assignee: View, Inc.
    Inventors: Robin Friedman, Sridhar K. Kailasam, Rao Mulpuri, Ronald A. Powell, Dhairya Shrivastava
  • Patent number: 10088729
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 2, 2018
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 10069978
    Abstract: A system, smart device and method for apportioning costs of smart device operations between purposes. Operation information concerning operations performed by the smart device is recorded. The operations are apportioned between purposes based on categorization information and the operation information. The cost of the apportioned operations performed by the device is determined for the purposes based on the operation information and tariff information.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: September 4, 2018
    Assignee: Mobility View Inc.
    Inventor: Thom Damstra