Abstract: A wearable sensor and method for providing a wearable sensor are disclosed. In a first aspect, the wearable sensor comprises at least one power source and a first module coupled to the at least one power source. The first module includes a first outer shell and a first printed circuit board (PCB) within the first outer shell. The wearable sensor further comprises a second module coupled to the first module. The second module includes a second outer shell and a second PCB within the second outer shell. One of the first and second modules is disposable and the other of the first and second modules is reusable.
Abstract: A system and method for powering a wireless sensor device are disclosed. In a first aspect, the wireless sensor device comprises at least two electrodes configured to be attached to a body and at least two leads coupled to the at least two electrodes. The wireless sensor device also includes a system on chip (SoC) coupled to the at least two leads and a portable power source (Vbatt) coupled to the SoC. When the at least two electrodes are attached to the body, a difference in resistance is measured between the at least two leads by the SoC and the difference in resistance is utilized by the SoC to enable the portable power source to activate the wireless sensor device.
Abstract: A method, system, and a computer-readable medium for pairing a wireless sensor device to a user are disclosed. The method, system, and computer-readable medium comprise providing an identification code that includes a network address within the wireless sensor device. The method, system, and computer-readable medium include utilizing an application within a mobile device. The application selects the user, obtains the identification code, scans for network addresses, and compares the network address to the scanned network addresses. When the network address matches one of the scanned network addresses, the wireless sensor device is paired to the user by the application.
Abstract: A method, system, and computer-readable medium for fall detection of a user are disclosed. In a first aspect, the method comprises determining whether first or second magnitude thresholds are satisfied. If the first or second magnitude thresholds are satisfied, the method includes determining whether an acceleration vector of the user is at a predetermined angle to a calibration vector. In a second aspect, the system comprises a processing system and an application that is executed by the processing system. The application determines whether first or second magnitude thresholds are satisfied. If the first or second magnitude thresholds are satisfied, the application determines whether an acceleration vector of the user is at a predetermined angle to a calibration vector.
Abstract: A health-monitoring system and method are disclosed. The health-monitoring system and method comprise a sensory system and a sensory to front-end communication (SFCM) protocol coupled to the sensory system. The health-monitoring system and method include a front-end system coupled to the sensory system and a front-end to back-end communication (FBCM) protocol coupled to the front-end system. The health-monitoring system and method include a back-end system. The SFCM protocol communicates with the front-end system using a first state awareness link and the FBCM protocol communicates with the back-end system using a second state awareness link.