Abstract: Disclosed is a method to evaluate the carcinogenicity of a compound using a transformation assay. The method includes contacting a compound to be tested for carcinogenicity with a test cell. The test cell has a defect in a protective cellular mechanism selected from the group of a defect in a DNA damage repair mechanism, a defect in cell cycle control, and a defect in the ability to prevent damage induced by oxygen free radicals. Cell growth is scored to identify the presence or absence of a transformation characteristic. The development of such a transformation characteristic indicates that the compound being tested is carcinogenic. Further embodiments include a method to identify tissue-specific carcinogens, a method to identify the biochemical mechanism of carcinogenicity of a compound, and a method to evaluate the anticarcinogenicity of a compound.
Abstract: Disclosed is a method to evaluate the carcinogenicity of a compound using a transformation assay. The method includes contacting a compound to be tested for carcinogenicity with a test cell. The test cell has a defect in a protective cellular mechanism selected from the group of a defect in a DNA damage repair mechanism, a defect in cell cycle control, and a defect in the ability to prevent damage induced by oxygen free radicals. Cell growth is scored to identify the presence or absence of a transformation characteristic. The development of such a transformation characteristic indicates that the compound being tested is carcinogenic. Further embodiments include a method to identify tissue-specific carcinogens, a method to identify the biochemical mechanism of carcinogenicity of a compound, and a method to evaluate the anticarcinogenicity of a compound.
Abstract: Disclosed is a method to evaluate the carcinogenicity of a compound using a transformation assay. The method includes contacting a compound to be tested for carcinogenicity with a test cell. The test cell has a defect in a protective cellular mechanism selected from the group of a defect in a DNA damage repair mechanism, a defect in cell cycle control, and a defect in the ability to prevent damage induced by oxygen free radicals. Cell growth is scored to identify the presence or absence of a transformation characteristic. The development of such a transformation characteristic indicates that the compound being tested is carcinogenic. Further embodiments include a method to identify tissue-specific carcinogens, a method to identify the biochemical mechanism of carcinogenicity of a compound, and a method to evaluate the anticarcinogenicity of a compound.
Abstract: Disclosed is a method to evaluate the carcinogenicity of a compound using a transformation assay. The method includes contacting a compound to be tested for carcinogenicity with a test cell. The test cell either includes a recombinant isolated nucleic acid molecule which encodes a cellular transforming protein or a modified genome which encodes a cellular transforming protein. Cell growth is scored to identify the presence or absence of a transformation characteristic, such as formation of foci, loss of growth factor or serum requirements or anchorage independence. The development of such a transformation characteristic indicates that the compound being tested is carcinogenic. Cellular transforming proteins of the present invention can include growth factors, growth factor receptors, intracellular transducers and nuclear transcription factors.
Abstract: Disclosed is a method to evaluate the carcinogenicity of a compound using a transformation assay. The method includes contacting a compound to be tested for carcinogenicity with a test cell. The test cell has a defect in a protective cellular mechanism selected from the group of a defect in a DNA damage repair mechanism, a defect in cell cycle control, and a defect in the ability to prevent damage induced by oxygen free radicals. Cell growth is scored to identify the presence or absence of a transformation characteristic. The development of such a transformation characteristic indicates that the compound being tested is carcinogenic. Further embodiments include a method to identify tissue-specific carcinogens, a method to identify the biochemical mechanism of carcinogenicity of a compound, and a method to evaluate the anticarcinogenicity of a compound.