Patents Assigned to Virginia Tech Intellectual Property, Inc.
  • Patent number: 12378286
    Abstract: The present invention provides for a composition comprising a purified or isolated Hyde1 gene product, or a functional fragment thereof; a modified host cell capable of expressing a Type VI secretion system (T6SS), Hyde1, and/or Hyde2, or a functional fragment thereof; a method of treating a disease caused all or in part by a bacterial cell, comprising administering a composition of the present invention to a subject in need thereof; and a method to limit or reduce growth of a pathogenic bacteria in an environment, comprising: introducing a non-pathogenic bacterial capable of expressing a Type VI secretion system (T6SS), Hyde1, and/or Hyde2, or functional fragment thereof, to an environment.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: August 5, 2025
    Assignees: The Regents of the University of California, ETH-Zurich, Virginia Tech Intellectual Properties, Inc., The University of North Carolina at Chapel Hill
    Inventors: Asaf Levy, Maximilian Mittelviefhaus, Jiamin Miao, Kunru Wang, Bingyu Zhao, Julia Vorholt-Zambelli, Jeffrey L. Dangl
  • Patent number: 12360906
    Abstract: Provided is a method of data storage, the method including receiving, at a host of a key-value store, a request to access a data node stored on a storage device of the key-value store, locating an address corresponding to the data node in a host cache on the host, and determining that the data node is in a kernel cache on the storage device.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: July 15, 2025
    Assignees: Samsung Electronics Co., Ltd., Virginia Tech Intellectual Properties, INC.
    Inventors: Naga Sanjana Bikonda, Wookhee Kim, Madhava Krishnan Ramanathan, Changwoo Min, Vishwanath Maram
  • Patent number: 12352695
    Abstract: A system and method for monitoring the health of dialysis patients with Raman spectroscopy measurements of one or more target analytes is described. The methods include irradiating one or more fluids of interest with light to produce one or more spectrum and detecting the spectrum with a detector. The fluids of interest are preferably those related to dialysis, including hemodialysis and peritoneal dialysis. In a preferred embodiment, the fluids are irradiated with monochromatic light, and one or more Raman spectra are detected as a result of the irradiation. The fluids may be irradiated within the dialysis tubing itself, or removed from the dialysis tubing and irradiated in a separate chamber. The Raman spectra of one or more target analytes of a dialysis patient may be followed over time or compared to one or more reference spectra, thereby providing information on the health of dialysis patients.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: July 8, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: John L. Robertson, Ryan Senger, Pang Du
  • Patent number: 12334997
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication over multi-input-multi-output (MIMO) channels.
    Type: Grant
    Filed: December 28, 2023
    Date of Patent: June 17, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy James O'Shea, Tugba Erpek
  • Patent number: 12325208
    Abstract: In some aspects, described herein are methods of additive manufacturing in which one or more corrugated layers are incorporated into the three-dimensional (3D) object. Also provided herein are 3D objects that can include one or more corrugated layers.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 10, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Brook Kennedy, Edward Olin Coe
  • Patent number: 12293297
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned compact representations of radio frequency (RF) signals. One of the methods includes: determining a first RF signal to be compressed; using an encoder machine-learning network to process the first RF signal and generate a compressed signal; calculating a measure of compression in the compressed signal; using a decoder machine-learning network to process the compressed signal and generate a second RF signal that represents a reconstruction of the first RF signal; calculating a measure of distance between the second RF signal and the first RF signal; and updating at least one of the encoder machine-learning network or the decoder machine-learning network based on (i) the measure of distance between the second RF signal and the first RF signal, and (ii) the measure of compression in the compressed signal.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: May 6, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Timothy James O'Shea
  • Patent number: 12269744
    Abstract: Methods of making graphene oxide and reduced graphene oxide are provided. The methods can include a simple one-pot synthesis of graphene oxide from a purified coal powder using a mild oxidizing acid. The methods provide for an improved, more cost-effective, and simpler process than conventional methods such as Hummers methods. In some aspects, placing the purified coal powder in the mild oxidation atmosphere includes contacting the purified coal powder with a mild oxidizing acid such as nitric acid, nitrous acid, sulfuric acid, phosphoric acid, benzoic acid, or a combination thereof. In some aspects, the mild oxidizing acid consists essentially of nitric acid. Graphene oxides and reduced graphene oxides prepared by the methods are also provided.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: April 8, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Roop L. Mahajan, Seul-Yi Lee
  • Patent number: 12252619
    Abstract: In various aspects, a polymer resin is provided for vat or ultraviolet-assisted direct ink writing (UV-DIW) photopolymerization. The resin can include a polyamic acid salt formed from the addition of a photocrosslinkable amine to a polyamic acid. The resin can include a photoinitiator suitable for initiating crosslinking of the photocrosslinkable amine when exposed to a light source of a suitable wavelength and intensity. The polyamic acid can be formed, for instance, by the addition of a diamine to a suitable dianhydride. Methods of additive manufacturing using the resins are also provided.
    Type: Grant
    Filed: March 30, 2019
    Date of Patent: March 18, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Daniel Rau, Jana Herzberger, Timothy Long, Christopher Williams
  • Patent number: 12234229
    Abstract: Sphingosine kinases are enzymes that catalyze the biosynthesis of sphingosine-1-phosphate. The invention provides prodrugs of compounds that are effective for inhibition of sphingosine kinase type 1, sphingosine kinase type 2, or both, according to formula (I) as described herein. Formula I compounds are useful in the treatment of a range of diseases wherein increasing the level of sphingosine-1-phosphate in blood is medically indicated. The invention also provides pharmaceutical compositions of Formula I compounds.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: February 25, 2025
    Assignees: University of Virginia Patent Foundation, Virginia Tech Intellectual Properties, Inc.
    Inventors: Steven Brandon Thorpe, Webster L. Santos, Kevin R. Lynch
  • Patent number: 12232792
    Abstract: The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
    Type: Grant
    Filed: November 6, 2023
    Date of Patent: February 25, 2025
    Assignees: Virginia Tech Intellectual Properties, Inc., AngioDynamics, Inc.
    Inventors: Robert E. Neal, Paulo A. Garcia, Rafael V. Davalos, Peter Callas
  • Patent number: 12223443
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learning estimation networks in a communications system. One of the methods includes: processing first information with ground truth information to generate a first RF signal by altering the first information by channel impairment having at least one channel effect, using a receiver to process the first RF signal to generate second information, training a machine-learning estimation network based on a network architecture, the second information, and the ground truth information, receiving by the receiver a second RF signal transmitted through a communication channel including the at least one channel effect, inferring by the trained estimation network the receiver to estimate an offset of the second RF signal caused by the at least one channel effect, and correcting the offset of the RF signal with the estimated offset to obtain a recovered RF signal.
    Type: Grant
    Filed: July 6, 2023
    Date of Patent: February 11, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy James O'Shea, Kiran Karra, T. Charles Clancy
  • Patent number: 12220860
    Abstract: Photocurable colloid binders are provided that overcome deficiencies associated with 3D printing of high molecular weight polymers via VAT photopolymerization. Methods of additive manufacturing are also provided using the binders. The approaches described herein effectively decouple the viscosity-molecular weight relationship by synthesizing and processing photo-reactive aqueous colloids that are sequestered within a photocrosslinkable scaffold. Sequestering polymers within discrete internal phases prevents inter-particle entanglement of the polymer chains, thus ensuring low viscosity. VP of polymer colloids results in a solid green body embedded with high molecular weight polymer particles. A post-processing heated drying step allows the polymers to coalesce and further entangle, forming a semi-interpenetrating network with mechanical performance of the high molecular weight material. The resins can further include inorganic particles such as silica and other ceramics, metal particles, and the like.
    Type: Grant
    Filed: September 5, 2022
    Date of Patent: February 11, 2025
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy E. Long, Viswanath Meenakshisundaram, Philip J. Scott, Christopher B. Williams
  • Patent number: 12214189
    Abstract: Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue, resulting in changes in passive electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time (˜10 s); this timeframe is much larger than pulse periods used with EBTs (˜1 s). Fourier Analysis SpecTroscopy (FAST) is introduced as a methodology for monitoring tissue inter-burst impedance (diagnostic FAST) and intra-burst impedance (therapeutic FAST) during EBTs. FAST is a rapid-capture (<<1 s) technique which enables monitoring of inter-burst and intra-burst impedance during EBTs in real-time. FAST identified a frequency which delineates thermal effects from electroporation effects in measured impedance. Significance: FAST demonstrates the potential to perform EIS, in addition to intra-burst impedance spectroscopy, using existing pulse generator topologies.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 4, 2025
    Assignees: Virginia Tech Intellectual Properties, Inc., Angio Dynamics, Inc.
    Inventors: Melvin F. Lorenzo, Christopher B. Arena, Suyashree Bhonsle, Natalie White, Lucy Epshteyn, Rafael V. Davalos
  • Patent number: 12180523
    Abstract: Described herein are engineered polynucleotides and vectors capable of encoding one or more engineered southern green stink bug pheromone synthesis enzymes. Also described herein are engineered southern green stink bug pheromone synthesis enzymes. Also described herein are methods of making modified plants capable of expressing one or more southern green stink bug pheromone synthesis enzymes.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: December 31, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Dorothea Tholl, Jason Lancaster
  • Patent number: 12176442
    Abstract: A diode includes a semiconductor region having at least one two-dimensional carrier channel of a first conductivity type, the first conductivity type being one of a n-type and a p-type conductivity, the at least one two-dimensional channel having a net charge; a material of a second conductivity type, the second conductivity type being the other of the n-type and the p-type conductivity, disposed on the semiconductor region, the material of the second conductivity type having a net-charge in a depletion region that is substantially equal to the net-charge of the at least one two-dimensional channel in the semiconductor region when the diode is under reverse bias; an anode material in contact with at least a portion of the at least one two-dimensional channel and at least a portion of the material of the second conductivity type; and a cathode material in contact with the at least one two-dimensional carrier channel.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: December 24, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Yuhao Zhang, Ming Xiao
  • Patent number: 12173280
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: December 24, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Patent number: 12168968
    Abstract: Various examples of simultaneous ocean wave and current energy harvesting are described, using a hybrid ocean energy converter and a mechanical transfer system therefor. In one example, a hybrid ocean energy converter includes a two-body point absorber comprising a first body and a second body. The two-body point absorber can be configured to transfer a linear relative motion between the first body and the second body to bi-directional rotation of a first input shaft. A turbine can be configured rotate a second input shaft. The converter further includes a hybrid power takeoff including a mechanical transfer system configured to mechanically couple the first input shaft, the second input shaft, an output shaft, and an output shaft.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: December 17, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Lei Zuo, Robert Parker, Xiaofan Li
  • Patent number: 12162962
    Abstract: A method for the synthesis of alkyl ?-carboxy(hydroxyethyl) polysaccharides is described. The method includes methylating or ethylating a polysaccharide or providing a methylated or ethylated polysaccharide, hydroxyethylating the methylated or ethylated polysaccharide, and oxidizing the hydroxyethylated polysaccharide to form the ?-carboxy(hydroxyethyl) polysaccharide. A method for the synthesis of oxidized polysaccharides is also described. The method includes hydroxypropylating a polysaccharide and oxidizing the hydroxypropylated polysaccharides. A method for the production of a solid capable of forming a hydrogel is also described. The method includes combining a first solution comprising an oxidized oligo(hydroxypropyl) polysaccharide bearing one or more ketone groups with a second solution comprising an amine substituted polysaccharide to form a third solution, and removing solvent from the third solution to form the solid, or adding an additional solvent to the third solution to precipitate the solid.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: December 10, 2024
    Assignees: Virginia Tech Intellectual Properties, Inc., Purdue Research Foundation
    Inventors: Kevin J. Edgar, Brittany L. B. Nichols, Junyi Chen, Charles Frazier, Lynne S. Taylor, Laura I. Mosquera-Giraldo, Ann Norris
  • Patent number: 12140548
    Abstract: Methods are provided for making a membrane or textile having a mechanically robust surface-enhanced Raman spectroscopy (SERS) substrate by in a first step adhesively bonding a micropatch array to a substrate, the micropatch array having a plurality of micron-scale pillars, each of the micron-scale pillars in the plurality of micron-scale pillars containing a plurality of plasmonic nanoparticles dispersed within a polymer matrix; and in a subsequent step etching a portion of the polymer matrix to expose at least a portion of the plasmonic nanoparticles at or near a surface of the micron-scale pillars. Membranes and textiles containing the mechanically robust surface-enhanced Raman spectroscopy (SERS) substrates are also provided.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: November 12, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Aditya Garg, Wei Zhou
  • Patent number: 12091484
    Abstract: Described herein are block copolymers that can be used as compatibilizers. The block copolymers can be graft block or triblock copolymers. The block copolymers can include a polysaccharide or a polyester and a polyolefin. Also described herein are polymer blends that can include and be made using the block copolymers described herein.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 17, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: John Matson, Kyle Arrington, Kevin Edgar, Junyi Chen