Abstract: A system and method for effectively encoding and decoding a wide-area network based remote presentation scheme makes use of a scalable video codec (SVC) to encode multiple screen data. A RGB frame of each screen is converted into YUV444 which is subsequently converted into two YUV420 frames. The V frame of the YUV444 is divided into four sub-frames. Two of those sub-frames are combined with the Y frame to create the first YUV420 frame. A second YUV420 frame is created by combining the remaining two V sub-frames with the U frame. The two YUV420 frames are encoded separately by using SVC or together by using Multi-View Codec. An SVC decoder receives and decodes two such YUV420 frames. Those decoded YUV420 frames are then used to obtain the YUV444 frame which is subsequently converted in to RGB frame to display the image on a screen.
Abstract: A system and method for effectively encoding and decoding a wide-area network based remote presentation scheme makes use of a scalable video codec (SVC) to encode multiple screen data. A RGB frame of each screen is converted into YUV444 which is subsequently converted into two YUV420 frames. The V frame of the YUV444 is divided into four sub-frames. Two of those sub-frames are combined with the Y frame to create the first YUV420 frame. A second YUV420 frame is created by combining the remaining two V sub-frames with the U frame. The two YUV420 frames are encoded separately by using SVC or together by using Multi-View Codec. An SVC decoder receives and decodes two such YUV420 frames. Those decoded YUV420 frames are then used to obtain the YUV444 frame which is subsequently converted in to RGB frame to display the image on a screen.