Abstract: Assays and methods for verifying the validity of a urine sample submitted for Drugs of Abuse (DOA) testing. Embodiments include a SUD Diagnostic Panel that includes six assays: specific gravity index assay, long-duration counterfeit urine assay, short-duration counterfeit urine assay, oxidant history assay, pH assay, and creatinine assay. The SUD Diagnostic Panel detects twelve principle classes of adulteration. Detection of adulteration of one or more urine samples from a patient indicates an attempt to subvert test results and provides an objective indication in one instance and an object diagnosis in another instance of SUD.
Abstract: Assays and methods for verifying the validity of a urine sample submitted for Drugs of Abuse (DOA) testing. Embodiments include a SUD Diagnostic Panel that includes six assays: specific gravity index assay, long-duration counterfeit urine assay, short-duration counterfeit urine assay, oxidant history assay, pH assay, and creatinine assay. The SUD Diagnostic Panel detects twelve principle classes of adulteration. Detection of adulteration of one or more urine samples from a patient indicates an attempt to subvert test results and provides an objective indication in one instance and an object diagnosis in another instance of SUD.
Abstract: The problem of detecting whether a urine sample is true human urine or a counterfeit urine product is solved by the use of reagent systems that detect two markers normally present in human urine. The markers acid phosphatase and alkaline phosphatase catalyze the substrates thymolphthalein monophosphate and p-nitrophenol phosphate, respectively. These substrates are formulated as spot tests on a dip stick or as reagents for use in automated chemical analyzers. The presence of the markers can be qualitatively detected by color-changes in the sample, formed by the pH-specific chromogens that result from catalysis of the substrates with the markers. The control reagent can further indicate whether a counterfeit urine product contains one or both of the chromogens.
Abstract: Reagents and methods for using automated laboratory equipment to determine whether the specific gravity of a urine sample is out of normal range as an indication of adulteration. The sodium (Na+) and potassium (K+) normally found in a urine sample can be used as markers. A sodium-potassium dependent ?-galactosidase can be utilized with o-nitrophenylgalactoside (o-NPG) which is cleaved into o-nitrophenol, which turns the sample yellow. The sample can be analyzed by spectrophotometry methods utilized in most clinical analyzers at a pre-determined primary wavelength to obtain a Specific gravity Index (SGI). Measurements of the SGI that are outside a known normal range can indicate that the sample integrity has been compromised.
Abstract: The problem of confirming the presence of an adulterant in a urine sample is solved by the use of a reagent capable of reacting with uric acid and non-urate markers in a urine sample. In one embodiment, a phosphotungtate reagent is used to react with the urine sample to create a blue coloration in the presence of uric acid or uric acid equivalents. A reduction or elimination of the blue coloration, resulting in a reduction in the light absorbance, of the urine sample can be used as an indicator of the historical presence of an adulterant. An Oxidant History test can also be generated using the phosphostungtate reagent, wherein the light absorbance resulting from the blue coloration is measured over time, with a measured reduction in the absorbance being an indication that an adulterant is or has been present in the urine sample and is oxidizing the uric acid and non-urate markers over time.
Abstract: The problem of confirming the presence of an adulterant in a urine sample is solved by the use of a reagent capable of reacting with uric acid and non-urate markers in a urine sample. In one embodiment, a phosphotungtate reagent is used to react with the urine sample to create a blue coloration in the presence of uric acid or uric acid equivalents. A reduction or elimination of the blue coloration, resulting in a reduction in the light absorbance, of the urine sample can be used as an indicator of the historical presence of an adulterant. An Oxidant History test can also be generated using the phosphostungtate reagent, wherein the light absorbance resulting from the blue coloration is measured over time, with a measured reduction in the absorbance being an indication that an adulterant is or has been present in the urine sample and is oxidizing the uric acid and non-urate markers over time.