Abstract: A container for the high temperature, high pressure processing of workpieces is disclosed. Such container has a removable plug with a deformable seal permitting rapid access to the interior of the container following processing. The removable plug contains various access ports allowing continuous monitoring of the interior of the container, continuous evacuation of gases, and introduction of controlled processing gases as may be required for various workpieces.
Abstract: The present invention describes a process for the compaction and densification of materials using heat and high pressure in which pressure is applied isostatically to the workpiece to be compacted, heat is applied to the pressurized workpiece as rapidly as feasible, effecting thereby full compaction and densification. Heating is terminated and the workpiece cooled while the workpiece is still pressurized. This process effects hot-isostatic-processing of workpieces while reducing the time such workpieces spend at elevated temperatures. The resulting parts can have novel structures, properties or compositions not obtained with other processing procedures.
Abstract: Apparatus and methods are disclosed for the rapid generation of high hydrostatic pressures and the concurrent delivery of said pressures to a workpiece. The apparatus and methods comprise the rapid thermal expansion and vaporization of a volatile fluid. The volatile fluid is typically liquid argon and heated typically by means of a controllable electric heater, delivered to the workpiece typically by means of a pressure-rupturable membrane. The disclosed apparatus and methods permit the application of high hydrostatic pressures to commercial-scale workpieces, in an economic manner and with reduced cycle times.
Abstract: Apparatus and methods are disclosed for the rapid generation of high hydrostatic pressures and the concurrent delivery of said pressures to a workpiece. The apparatus and methods comprise the rapid thermal expansion and vaporization of a volatile fluid. The volatile fluid is typically liquid argon and heated typically by way of a controllable electric heater, delivered to the workpiece typically by way of a pressure-rupturable membrane. The disclosed apparatus and methods permit the application of high hydrostatic pressures to commercial-scale workpieces, in an economic manner and with reduced cycle times.
Abstract: A method for preserving biological material is disclosed in which the biological material is stored at cryogenic temperatures for long periods of time without incurring fatal damage to cells, tissues or organs. The process comprises freezing the biological material under conditions of temperature and pressure to avoid the formation of crystalline ice I at all times during the freezing process. Rather, metastable phases of ice are exploited to reduce damage to the biological material upon freezing, storage or subsequent thawing.