Patents Assigned to Volume Graphics GMBH
  • Patent number: 11830175
    Abstract: The invention relates to a computer-implemented method for the measurement of an object, wherein the method comprises the following steps: ascertainment of measurement data using a radiographic measurement of the object, wherein the measurement data generates a digital representation of the object with a large number of items of image information of the object; and carrying out the following steps at least before ending the ascertainment of measurement data: analysis of at least one portion of the digital representation of the object; optimization of at least one recording parameter of the radiographic measurement using the analysed portion of the digital representation of the object; and adaptation of the step of ascertainment of measurement data taking the at least one recording parameter into consideration. The invention thus provides a computer-implemented method that has an increased efficiency.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: November 28, 2023
    Assignee: VOLUME GRAPHICS GMBH
    Inventors: Christof Reinhart, Daniela Handl, Sven Gondrom-Linke, Christoph Poliwoda, Matthias Flessner, Thomas Günther, Sören Schüller
  • Patent number: 11830226
    Abstract: Described is a method for compressing measurement data of a volume which comprises an object, wherein a digital representation of the object comprising a plurality of image information items of the object is generated by the measurement. The method comprises: providing an analysis specification for at least one predetermined region in the measurement volume; determining the measurement data in the measurement volume; defining a subset of the measurement data which corresponds to the at least one predetermined region of the analysis specification; selecting at least one compression rate for the subset on the basis of the analysis specification; selecting a first compression method for a remainder of the measurement data outside the subset, the first compression method having a compression rate; compressing the subset with the selected at least one compression rate, and compressing the remainder of the measurement data by way of the first compression method.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: November 28, 2023
    Assignee: VOLUME GRAPHICS GMBH
    Inventors: Matthias Flessner, Christoph Poliwoda, Christof Reinhart, Thomas Günther
  • Patent number: 11776127
    Abstract: Described is a method for segmenting measurement data from measurement of an object that has at least one material transition region. The measurement data are used to generate a digital object representation that has the material transition region and a multiplicity of spatially resolved image information items relating to the object. The method may include: determining measurement data that have at least one small structure having an extent which is less than a predefined extent; determining at least two homogeneous regions in the measurement data and/or in the digital object representation, wherein at least one homogeneous regions has a small structure; analysing a local similarity of the multiplicity of spatially resolved image information items; adapting an extent of each homogeneous region until at least one border region is arranged at an expected position of a material transition region; and segmenting the digital object representation based on the adapted homogeneous regions.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 3, 2023
    Assignee: VOLUME GRAPHICS GMBH
    Inventors: Christoph Poliwoda, Sören Schüller
  • Patent number: 11538144
    Abstract: The invention relates to a method for determining errors in at least one parameter of the object derived from a digital representation of an object, wherein the digital representation comprises a large number of pixels arranged on a grid. At least one item of image information that quantifies a material-specific value of the object at the position of the pixel is assigned to a pixel. The image information results from a metrological mapping of the object, and is overlaid with statistical noise. As a result of the metrological mapping of the object, the image information of a first pixel is correlated to the image information of pixels within a surroundings of the first pixel defined by a correlation length of the image.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: December 27, 2022
    Assignee: Volume Graphics GmbH
    Inventors: Thomas Günther, Christof Reinhart, Christoph Poliwoda
  • Patent number: 11335005
    Abstract: Described is a computer-implemented method for determining material interfaces of an object from at least one measurement of the object, a rasterized representation of the object being produced by means of the measurement, the rasterized representation having a plurality of measurement points, a measurement point having at least one piece of image information, which indicates a value of a measurement variable for the object at the position of the measurement point. The method comprises the determining of a parameterization of the rasterized representation of the object, the parameterization assigning at least one parameter to each of the measurement points of a subset of the measurement points of the representation, and the applying of at least one parameter-dependent edge-detection operator to the measurement points of the rasterized representation, an edge-detection operator being designed to determine the location of at least one material interface in the rasterized representation.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 17, 2022
    Assignee: Volume Graphics GmbH
    Inventors: Christoph Poliwoda, Thomas Gunther, Christof Reinhart
  • Patent number: 11263812
    Abstract: Described is compressing a digital representation of an object, wherein the object representation comprises image information items for the object that each specify a value of a measurand for the object at a defined position of the object. Compressing includes determining the object representation, determining a distance field from the image information items of the object representation that comprises a plurality of data points in a grid, the distance field assigns at least one distance value to each of the data points that in each case indicate the shortest distance of the data point from a closest material boundary of the object, determining a near region around a material boundary of the object, determining a sub-set of data points of the distance field which lie outside the near region, deleting the sub-set of data points, and saving the distance field in the form of a compressed object representation.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 1, 2022
    Assignee: Volume Graphics GmbH
    Inventors: Christoph Poliwoda, Thomas Gunther, Christof Reinhart
  • Patent number: 11138720
    Abstract: Described is a computer-implemented method for recognizing the geometry of a portion of an object in a digital representation of the object having a plurality of image points representing at least one material interface of the object. The method comprises determining and displaying the object representation, receiving a user input specifying a first position in the object representation as a starting point, determining a first set of image points in the vicinity of the starting point representing the geometry of the portion of the starting point, determining a checking geometry on the basis of the first set of image points by adapting at least one geometry element to the first set of image points, determining a second set of image points in the vicinity of the starting point representing the geometry of the portion of the checking geometry, inserting the second set of image points into and displaying a target set of image points.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: October 5, 2021
    Assignee: Volume Graphics GmbH
    Inventors: Nicolas Wenzel, Dzmitry Razmyslovich, Markus Rhein
  • Patent number: 11127132
    Abstract: Described is a computer-implemented method for determining material interfaces of an object by means of at least one measurement of the object, a rasterized representation of the object having a plurality of pixels being produced by means of the measurement, each pixel having at least one piece of image information, which indicates a value of a measurement variable for the object at the position of the measurement point. The method comprises the determining of a parameterization of the rasterized representation of the object, the parameterization assigning at least one parameter to each of the measurement points of a subset of the measurement points of the representation, and the applying of at least one parameter-dependent edge-detection operator to the measurement points of the rasterized representation, an edge-detection operator being designed to determine the location of at least one material interface in the rasterized representation.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: September 21, 2021
    Assignee: Volume Graphics GmbH
    Inventors: Christoph Poliwoda, Thomas Gunther, Christof Reinhart
  • Patent number: 11113834
    Abstract: Described is determining a local deviation of a geometry of an object from a target geometry of the object on the basis of a digital representation of the object that comprises image information items that each specify a value of a measurand for the object at a defined position of the object. This includes determining the object representation, determining a distance field from the image information items of the object representation that comprises distance values for a specific point of the distance field that specifies the shortest distance of the point from a closest material boundary of the geometry of the object, determining the target geometry of the object, and determining the local deviation of the geometry of the object from the target geometry of the object at a test point on a material boundary predefined by the target geometry.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 7, 2021
    Assignee: Volume Graphics GmbH
    Inventors: Christoph Poliwoda, Thomas Gunther, Christof Reinhart
  • Patent number: 11047810
    Abstract: Computer-implemented methods for monitoring the functional state of a system for the computer-tomographic examination of workpieces by carrying out one or more computer-tomographic measurements on the workpiece. The measurements each result here in at least one measured value for at least one measurement variable. The method for monitoring the functional state selects measured values for at least one measurement variable from at least two measurements on one or more workpieces. At least one degree of variation for the selected measured values of the at least one measurement variable as well as at least one reference degree of variation for measured values of the at least one measurement variable is determined. The functional state of the system is determined by comparing the at least one determined degree of variation with the at least one reference degree of variation for the at least one measurement variable.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 29, 2021
    Assignee: Volume Graphics GmbH
    Inventors: Torsten Schönfeld, Markus Bartscher, Thomas Günther, Christoph Poliwoda, Christof Reinhart
  • Patent number: 10825202
    Abstract: Computer-implemented methods and computer-readable media for compressing a digital representation of an object. The object representation comprises a plurality of pixels arranged at least a first distance apart from each other in a two-dimensional plane or in a three-dimensional space. Each pixel is assigned at least one item of image information determined by a metrological representation of the object. The image information of a first pixel is correlated with the image information of pixels within an environment of the first pixel defined by a correlation length. The method comprises determining the object representation, determining the correlation length, determining a second distance less than or equal to the correlation length and greater than the first distance, and adjusting the object representation so that the pixels are arranged apart from each other by at least the second distance and by no greater than the correlation length.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 3, 2020
    Assignee: Volume Graphics GmbH
    Inventors: Christoph Poliwoda, Christof Reinhart, Thomas Gunther
  • Patent number: 10699401
    Abstract: The aim of the invention is to determine the local quality of surface data (O) extracted from a volume data set (V) by means of a surface determination method. An environment in the volume data set (V) is determined for each surface point of the surface data (O). Using the curve of the grayscale values of voxels from said environment, at least one quality characteristic (Q) is derived which characterizes the quality of the respective examined surface point. The quality characteristic (Q) or each quality characteristic is output together with coordinates of the respective examined surface point as the method result (O?).
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 30, 2020
    Assignee: VOLUME GRAPHICS GMBH
    Inventors: Matthias Flessner, Tino Hausotte
  • Patent number: 10572987
    Abstract: The invention relates to a method and a device for processing a volumetric image record. The method comprises the following steps: carrying out a non-optical image scanning method on an object to be analysed and generating a volumetric image record and extracting the object contour from the volumetric image record in order to determine the position of the object surface; defining an object surface point and a surrounding area for said object surface point and analysing the grey tones within the surrounding area; calculating a quality value, which reflects the localised quality of the surface, for the object surface point on the basis of the grey-tone analysis. The device comprises equipment for carrying out the method.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 25, 2020
    Assignees: Volume Graphics GMBH, Physikalisch-Technische Bundesanstalt
    Inventors: Markus Bartscher, Thomas Günther, Christoph Poliwoda, Christof Reinhart
  • Patent number: 10139353
    Abstract: An apparatus for examining components comprising laid fiber composite fabrics or woven fiber composite fabrics which comprise a number of thin plies with in part different alignment, comprises a measuring device for carrying out a non-destructive measurement to collect volumetric data of the component and comprising an evaluation device for evaluating the collected data of the component, wherein the evaluation by the evaluation device comprises selecting a first analysis region in the collected data of the component, determining a local coordinate system of the first analysis region, successively establishing local material properties layer-by-layer at predetermined distances in a direction perpendicular to the lateral extent of the first analysis region, detecting ply boundaries along the established material properties, and averaging the local material properties in each detected ply.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: November 27, 2018
    Assignee: VOLUME GRAPHICS GMBH
    Inventors: Thomas Günter, Christoph Poliwoda, Christof Reinhart, Tobias Dierig
  • Publication number: 20170330317
    Abstract: The invention relates to a method and a device for processing a volumetric image record. The method comprises the following steps: carrying out a non-optical image scanning method on an object to be analysed and generating a volumetric image record and extracting the object contour from the volumetric image record in order to determine the position of the object surface; defining an object surface point and a surrounding area for said object surface point and analysing the grey tones within the surrounding area; calculating a quality value, which reflects the localised quality of the surface, for the object surface point on the basis of the grey-tone analysis. The device comprises equipment for carrying out the method.
    Type: Application
    Filed: October 29, 2015
    Publication date: November 16, 2017
    Applicants: Volume Graphics GMBH, Physikalisch-Technische Bundesanstalt
    Inventors: Markus Bartscher, Thomas Günther, Christoph Poliwoda, Christof Reinhart