Abstract: The present disclosure discusses a devices, systems and methods for transvascular, transvenous and/or transdural access, to the brain parenchyma, subarachnoid or subdural spaces. In some embodiments, the disclosed systems and methods may be used for local drug delivery, tissue biopsy, nanofluidic or microelectronic device/component delivery/insertion/implantation, in situ imaging, ablation of abnormal brain tissue and the like. Embodiments of the present disclosure include an access catheter system for extravascular procedures in the brain having an elongate, flexible tubular body, with at least one lumen extending axially there through between a proximal end, and a distal end. The access catheter system may include a side exit port and a distal end port. Further, the access catheter system may include a selective deflector positioned within the lumen configured to deflect a procedure catheter and permit a guide catheter.
Abstract: The present disclosure is directed towards devices, methods, and related systems that are minutely-invasively delivered to the brain parenchyma, subdural or subarachnoid space where the devices, methods, and systems directly interface with central nervous system media (i.e., fluid or tissue) enabling detecting, sensing, measuring, stimulating, altering and/or modulating of the media or tissue surfaces.
Abstract: The present disclosure is directed towards devices, methods, and related systems that are minutely-invasively delivered to the brain parenchyma, subdural or subarachnoid space where the devices, methods, and systems directly interface with central nervous system media (i.e., fluid or tissue) enabling detecting, sensing, measuring, stimulating, altering and/or modulating of the media or tissue surfaces.