Patents Assigned to VTT Technical Research Centre of Finland Ltd.
  • Patent number: 11894827
    Abstract: An acoustic wave filter device is disclosed. The device includes an acoustic wave filter element, and a first resonator and a second resonator coupled to the acoustic wave filter element. The acoustic wave filter element includes interdigited input electrodes and output electrodes located on a top surface of a piezoelectric layer. Each of the first and the second resonators includes a top electrode on the top surface, and a bottom electrode on the bottom surface of the piezoelectric layer. At least one of each of the first and the second resonators' electrodes is electrically connected to the acoustic wave filter element. The first resonator has a first notch in resonator impedance at a first frequency. The second resonator includes a first mass loading layer on the second resonator electrode such that the second resonator has a second notch in resonator impedance at a second frequency different from the first frequency.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 6, 2024
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Markku Ylilammi, Tuomas Pensala, James Dekker
  • Patent number: 11870408
    Abstract: Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: January 9, 2024
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Markku Ylilammi, Tapani Makkonen, Tuomas Pensala
  • Patent number: 11827891
    Abstract: The present disclosure relates to compositions and methods useful for the production of heterologous proteins in filamentous fungal cells.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: November 28, 2023
    Assignee: VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD
    Inventors: Christopher Landowski, Anne Huuskonen, Juhani Saarinen, Ann Westerholm-Parvinen, Anne Kanerva, Jari Natunen, Anna-Liisa Hänninen, Noora Salovuori, Merja Penttilä, Markku Saloheimo
  • Patent number: 11381220
    Abstract: Acoustic wave filter devices is disclosed. The device includes a piezoelectric layer, an input electrode and an output electrode located on a top surface of the piezoelectric layer and physically separated from one another, and a counter electrode having a top surface connected to a bottom surface of the piezoelectric layer. The input and output electrodes each include a base and at least one extension extending from the base. The at least one extension of the input electrode extending alongside and in a generally opposite direction to and separated by a gap width from an adjacent extension of the at least one extensions of the output electrode. In some embodiments, the at least one extension of the input or output electrodes has a width that can changes from a first end of the at least one extension to a second end.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: July 5, 2022
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Tuomas Pensala, Markku Ylilammi
  • Patent number: 11290083
    Abstract: An acoustic wave filter device is disclosed. The device includes an acoustic wave filter element, and a first resonator and a second resonator coupled to the acoustic wave filter element. The acoustic wave filter element includes interdigitated input electrodes and output electrodes located on a top surface of a piezoelectric layer and an counter-electrode on the bottom surface of the piezoelectric layer. Each of the first and the second resonators includes a resonator electrode on the top surface of the piezoelectric layer and a resonator counter-electrode on the bottom surface of the piezoelectric layer. The first resonator has a first notch in resonator impedance at a first frequency. The second resonator includes a first mass loading layer on the second resonator electrode such that the second resonator has a second notch in resonator impedance at a second frequency that is different from the first frequency.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 29, 2022
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Markku Ylilammi, Tuomas Pensala, James Dekker
  • Patent number: 11223341
    Abstract: Acoustic wave filter devices are disclosed. In an embodiment, the device includes an acoustic wave resonator and a reflecting layer located below the acoustic wave resonator. The wave resonator includes an input electrode including a first electrode and a counter electrode, a piezoelectric layer sandwiched between the first electrode and the counter electrode, and an output electrode. The piezoelectric layer has a first region covered by the first or the output electrode, and a second region not covered by any of the first and the output electrode. The first region has a second order acoustic thickness-shear resonance (TS2) mode dispersion curve with a first minimum frequency, and the second region has a TS2 mode dispersion curve with a second minimum frequency. The reflecting layer's thickness is such that a difference between the first minimum frequency and the second minimum frequency is less than 2% of a filter center frequency.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: January 11, 2022
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Tuomas Pensala, Markku Ylilammi
  • Patent number: 11146241
    Abstract: Acoustic wave devices are disclosed. The devices include a substrate, a bi-layer reflector and an acoustic wave resonator. The bi-electric reflector is above the substrate and includes a first layer that has a first acoustic impedance, and a second layer that has a second acoustic impedance lower than the first acoustic impedance. The first layer has a first surface that includes a floating region that provides a ceiling of a cavity. The second layer is on top of the floating region of the first layer. The acoustic wave resonator is on top of the second layer of the bi-layer reflector. The acoustic wave resonator includes a piezoelectric layer, an electrode and a counter-electrode such that application of a radio frequency voltage between the electrode and the counter-electrode creates acoustic resonance waves in the piezoelectric layer.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: October 12, 2021
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tuomas Pensala, Tapani Makkonen
  • Patent number: 11088670
    Abstract: An acoustic wave filter device is disclosed. The device includes an acoustic wave filter element, and a first resonator and a second resonator coupled to the acoustic wave filter element. The acoustic wave filter element includes interdigited input electrodes and output electrodes located on a top surface of a piezoelectric layer. Each of the first and the second resonators includes a top electrode on the top surface, and a bottom electrode on the bottom surface of the piezoelectric layer. At least one of each of the first and the second resonators' electrodes is electrically connected to the acoustic wave filter element. The first resonator has a first notch in resonator impedance at a first frequency. The second resonator includes a first mass loading layer on the second resonator electrode such that the second resonator has a second notch in resonator impedance at a second frequency different from the first frequency.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 10, 2021
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Markku Ylilammi, Tuomas Pensala, James Dekker
  • Patent number: 11057013
    Abstract: Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 6, 2021
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Markku Ylilammi, Tapani Makkonen, Tuomas Pensala
  • Patent number: 10876103
    Abstract: Certain embodiments of the disclosure are directed to variant filamentous fungal cells, compositions thereof and methods thereof for increased production of one or more proteins of interest. More particularly, in certain embodiments, the disclosure is directed to variant filamentous fungal (host) cells derived from parental filamentous fungal cells, wherein the variant host cells comprise a genetic modification which enables the expression/production of a protein of interest (POI) in the absence of inducing substrate. In certain embodiments, a variant fungal host cell of the disclosure comprises a genetic modification which increases the expression of a variant activator of cellulase expression 3 (ace3) gene encoding an Ace3 protein referred to herein as Ace3-L.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: December 29, 2020
    Assignees: DANISCO US INC, VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD
    Inventors: Michael Ward, Yun Luo, Felipe Oseas Bendezu, Mari Valkonen, Markku Saloheimo, Nina Aro, Tiina Pakula
  • Patent number: 10790801
    Abstract: An acoustic wave filter device is disclosed. The device includes an acoustic wave filter element, and a first resonator and a second resonator coupled to the acoustic wave filter element. The acoustic wave filter element includes interdigited input electrodes and output electrodes located on a top surface of a piezoelectric layer and an counter-electrode on the bottom surface of the piezoelectric layer. Each of the first and the second resonators includes a resonator electrode on the top surface of the piezoelectric layer and a resonator counter-electrode on the bottom surface of the piezoelectric layer. The first resonator has a first notch in resonator impedance at a first frequency. The second resonator includes a first mass loading layer on the second resonator electrode such that the second resonator has a second notch in resonator impedance at a second frequency that is different from the first frequency.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 29, 2020
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Markku Ylilammi, Tuomas Pensala, James Dekker
  • Patent number: 10756696
    Abstract: Acoustic wave filter devices is disclosed. The device includes a piezoelectric layer, an input electrode and an output electrode located on a top surface of the piezoelectric layer and physically separated from one another, and a counter electrode having a top surface connected to a bottom surface of the piezoelectric layer. The input and output electrodes each include a base and at least one extension extending from the base. The at least one extension of the input electrode extending alongside and in a generally opposite direction to and separated by a gap width from an adjacent extension of the at least one extensions of the output electrode. In some embodiments, the at least one extension of the input or output electrodes has a width that can changes from a first end of the at least one extension to a second end.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 25, 2020
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Tapani Makkonen, Tuomas Pensala, Markku Ylilammi
  • Patent number: 10630256
    Abstract: Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: April 21, 2020
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Markku Ylilammi, Tapani Makkonen, Tuomas Pensala
  • Patent number: 10427331
    Abstract: Disclosed are methods of manufacturing a SH surface including: creating a master with SH features by: depositing a rigid material onto a first surface, wherein the first surface is a shrinkable platform; shrinking the first surface by heating to create a SH surface, wherein the SH surface has micro- and nano-scale structural features that trap air pockets and prevent water from wetting the surface; forming the master by molding an epoxy with the shrunken first surface having a SH surface, wherein the master acquires the SH features of the first surface; and imprinting the SH features of the master onto a second surface to impart the SH features of the master onto the second surface. Some embodiments relate to a superhydrophobic (SH) surface, an article including a SH surface as disclosed, such as a microfluidic device or a food container.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 1, 2019
    Assignees: The Regents of the University of California, VTT Technical Research Centre of Finland Ltd.
    Inventors: Jolie McLane, Michelle Khine, Ralph Liedert