Abstract: Provided herein is a method for use in medical applications that permits (1) affordable three-dimensional imaging of blood flow using a low-profile easily-attached transducer pad, (2) real-time blood-flow vector velocity, and (3) long-term unattended Doppler-ultrasound monitoring in spite of motion of the patient or pad. The pad and associated processor collects and Doppler processes ultrasound blood velocity data in a three dimensional region through the use of a planar phased array of piezoelectric elements. The invention locks onto and tracks the points in three-dimensional space that produce the locally maximum blood velocity signals. The integrated coordinates of points acquired by the accurate tracking process is used to form a three-dimensional map of blood vessels and provide a display that can be used to select multiple points of interest for expanded data collection and for long term continuous and unattended blood flow monitoring.
Abstract: A 1 ½ D probe is used in acoustic Doppler blood flow imaging to accurately determine the position of blood vessel in three dimensions. The 1 ½ D probe has closely spaced elements in the x direction and widely spaced elements in the y direction. Doppler power measurements are used to determine the y position of the blood vessel to an accuracy better than achieved by prior art techniques.
Abstract: A method and device are provided for use in medical applications that permit affordable 3D imaging of blood flow using a low profile easily long-term unattended Doppler ultrasound monitoring in spite of motion of the patient or pad. The pad, and associated processor collects, Doppler processes ultrasound blood velocity data in a 3D region through the use of a planar phased array of piezoelectric elements. The invention locks onto, and tracks the points in 3D space that produce the locally maximum blood velocity signals. The integrated coordinates of points acquired by the accurate tracking process is used to form a 3D map of blood vessels, provide a display that can be used to select multiple points of interest for expanded data collection, for long-term continuous, and unattended blood flow monitoring.
Abstract: A thinned array of ultrasound transducers includes plural transmitters configured so that each transmitter insonates one segment of a volume at a time and an array of receivers electronically aimed at and dynamically focused upon subsegments of the insonated segment. The spacing between receivers is greater than one-half the transmitted wavelength. Echoes are received in a pattern that is aligned with the insonates segment so that receiver grating lobes nearest the echoes coincide with first transmitter nulls, minimizing the deleterious effects of grating lobes.