Patents Assigned to VulcanForms Inc.
  • Patent number: 11951563
    Abstract: Disclosed embodiments relate to additive manufacturing systems. In some embodiments, an additive manufacturing system includes a fixed build plate, and a build volume extends above the fixed build plate. A boundary of the build volume may be defined by a powder containing shroud that is vertically displaceable relative to the fixed build plate. A powder deposition system is configured to deposit a powder layer along an upper surface of the build volume and the powder deposition is vertically displaceable relative to the fixed build plate. An optics assembly configured to direct laser energy from one or more laser energy sources towards the build volume, and exposure of the powder layer to the laser energy melts at least a portion of the powder layer. In some embodiments, the build plate may be supported by support columns configured to maintain the build plate in a level orientation throughout a build process.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: April 9, 2024
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11951565
    Abstract: Disclosed embodiments relate to additive manufacturing systems. In some embodiments, an additive manufacturing system may include a plurality of laser energy sources, an optics assembly configured to direct laser energy onto a build surface, and an optical fiber connector positioned between the plurality of laser energy sources and the optics assembly. A first plurality of optical fibers may extend between the plurality of laser energy sources and the optical fiber connector, and a second plurality of optical fibers may extend between the optical fiber connector and the optics assembly. Each optical fiber of the first plurality of optical fibers may be coupled to a corresponding optical fiber of the second plurality of optical fibers within the optical fiber connector.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: April 9, 2024
    Assignee: VulcanForms Inc.
    Inventors: Raghav Aggarwal, Martin C. Feldmann
  • Patent number: 11931824
    Abstract: Laser control systems and related methods for controlling arrays of lasers are disclosed. A laser control system may include a first controller configured to generate a trigger signal based on a position of a laser array, and a second controller configured to send a firing signal to one or more lasers of the laser array upon receiving the trigger signal. The one or more lasers may be selected based on a desired pattern of laser energy to be formed at a particular position of the laser array.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: March 19, 2024
    Assignee: VulcanForms Inc.
    Inventors: Jan Pawel Komsta, Alexander Dunbar, Matthew Sweetland
  • Patent number: 11858206
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11850793
    Abstract: Aspects described herein relate to additive manufacturing systems and related methods. In some embodiments, an additive manufacturing system includes a laser array position detector to determine a position and/or orientation of laser energy pixels in a laser array. The laser array position detector may include an aperture and an optical sensor positioned within the aperture to detect laser energy from a laser energy pixel when the laser array is scanned across the aperture.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: December 26, 2023
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20230391001
    Abstract: Systems and methods for additive manufacturing are generally disclosed. Additive manufacturing may be performed in a continuous manner and/or semi-continuous manner by transporting one or more build plates relative to printheads that comprise a plurality of energy source arrays and/or binderjet arrays that may be selectively activated to form a desired pattern in a material layer disposed on the one or more build plates.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 7, 2023
    Applicant: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Raghav Aggarwal, Anastasios John Hart, Brent Jerome Brunell
  • Publication number: 20230373160
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20230294171
    Abstract: An additive manufacturing system may include a build surface and an optics assembly movable relative to the build surface. The optics assembly may direct laser energy from one or more laser energy sources toward the build surface to melt a portion of the build surface. The system may further comprise a gas flow head operatively coupled to the optics assembly and moveable relative to the build surface. The gas flow head may define a partially enclosed volume between the optics assembly and the build surface. The gas flow head may generate a non-uniform flow of gas through the gas flow head in a direction that is opposite a direction of motion of the optics assembly. A velocity of the gas flow may be sufficient to entrain particles ejected from the melted portion of the layer of material in order to remove the ejected particles from the partially enclosed volume.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 21, 2023
    Applicant: VulcanForms Inc.
    Inventors: Raghav Aggarwal, Michael von Dadelszen, Alexander Dunbar, Piotr Liebersbach
  • Patent number: 11760014
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: September 19, 2023
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20230256543
    Abstract: An additive manufacturing system may include a build surface, one or more laser energy sources, and an optics assembly. Exposure of a layer of material on the build surface to laser energy from the optics assembly melts at least a portion of the layer of material. A gas flow head is coupled to the optics assembly and defines a partially enclosed volume between the optics assembly and the build surface. The gas flow head includes a gas inflow through which a supply gas flows into the gas flow head, a gas outflow through which a return gas flows out of the gas flow head, and an aperture arranged to permit transmission of the laser energy through the gas flow head to the build surface. The supply gas and return gas define a gas flow profile within the gas flow head.
    Type: Application
    Filed: June 24, 2022
    Publication date: August 17, 2023
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20230249259
    Abstract: Systems and methods for additive manufacturing are generally described. In some embodiments, an additive manufacturing system may include at least one mechanical fixture in the form of a resilient member for accurately positioning one or more optical fibers without the use of adhesives. The resilient member may, in some embodiments, bias each optical fiber (or similarly, an endcap coupled to a distal end of an optical fiber) against an alignment fixture to maintain a desired position and/or orientation of the fiber or endcap. In some embodiments, an additive manufacturing system may include at least one stray light baffle for reducing the amount of stray light within the optical system.
    Type: Application
    Filed: February 3, 2023
    Publication date: August 10, 2023
    Applicant: VulcanForms Inc.
    Inventors: Stephen C. Couitt, Manuel Joseph Leonardo, Michael von Dadelszen, Martin C. Feldmann, Jonathan Robert Silva
  • Publication number: 20230219290
    Abstract: Methods and apparatuses for additive manufacturing are described. A method for additive manufacturing may include exposing a layer of material on a build surface to one or more projections of laser energy including at least one line laser having a substantially linear shape. The intensity of the line laser may be modulated so as to cause fusion of the layer of material according to a desired pattern as the one or more projections of laser energy are scanned across the build surface.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Applicant: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Anastasios John Hart, Knute Svenson, Andrey Vyatskikh
  • Publication number: 20230182380
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 15, 2023
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11602792
    Abstract: Methods and apparatuses for additive manufacturing are described. A method for additive manufacturing may include exposing a layer of material on a build surface to one or more projections of laser energy including at least one line laser having a substantially linear shape. The intensity of the line laser may be modulated so as to cause fusion of the layer of material according to a desired pattern as the one or more projections of laser energy are scanned across the build surface.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: March 14, 2023
    Assignee: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Anastasios John Hart, Knute Svenson, Andrey Vyatskikh
  • Patent number: 11602891
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 14, 2023
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20230056367
    Abstract: Systems and methods for additive manufacturing are generally described. According to certain aspects, endcaps optically coupled to optical fibers of additive manufacturing systems are provided. In some aspects, methods for reducing a power area density of laser energy within an endcap are provided. The endcaps described herein may be used to at least partially mitigate thermal cycling that may result from the transmission of laser energy through interfaces of an additive manufacturing system.
    Type: Application
    Filed: July 20, 2022
    Publication date: February 23, 2023
    Applicant: VulcanForms Inc.
    Inventors: Manuel Joseph Leonardo, Martin C. Feldmann
  • Publication number: 20220331905
    Abstract: An additive manufacturing system may include a build surface, one or more laser energy sources, and an optics assembly. Exposure of a layer of material on the build surface to laser energy from the optics assembly melts at least a portion of the layer of material. A gas flow head is coupled to the optics assembly and defines a partially enclosed volume between the optics assembly and the build surface. The gas flow head includes a gas inflow through which a supply gas flows into the gas flow head, a gas outflow through which a return gas flows out of the gas flow head, and an aperture arranged to permit transmission of the laser energy through the gas flow head to the build surface. The supply gas and return gas define a gas flow profile within the gas flow head.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 20, 2022
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11453087
    Abstract: An additive manufacturing system includes a build surface, one or more laser energy sources, and an optics assembly. Exposure of a layer of material on the build surface to laser energy from the optics assembly melts at least a portion of the layer of material. A gas flow head is coupled to the optics assembly and defines a partially enclosed volume between the optics assembly and the build surface. The gas flow head includes a gas inflow through which a supply gas flows into the gas flow head, a gas outflow through which a return gas flows out of the gas flow head, and an aperture arranged to permit transmission of the laser energy through the gas flow head to the build surface. The supply gas and return gas define a gas flow profile within the gas flow head.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: September 27, 2022
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20220219260
    Abstract: Additive manufacturing systems and related methods are disclosed. In some embodiments, an additive manufacturing system includes a build surface, one or more laser energy sources configured to emit laser energy, an optical phased array operatively coupled to the one or more laser energy sources, and a Risley prism assembly comprising a plurality of wedge prisms. The optical phased array includes one or more phase shifters operatively coupled to the one or more laser energy sources and configured to control a phase of the laser energy. The optical phased array is configured to direct the laser energy towards the Risley prism assembly, and the Risley prism assembly is configured to direct the laser energy towards the build surface.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 14, 2022
    Applicant: VulcanForms Inc.
    Inventor: Martin C. Feldmann
  • Publication number: 20220152926
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland