Patents Assigned to VUV Analytics, Inc.
-
Patent number: 10677767Abstract: In one embodiment, an improved gas analysis system having a gas flow cell is provided. In another embodiment an improved gas flow cell is provided. As disclosed herein, dead volumes in a gas flow channel of a gas flow cell may be minimized through the use of one or more additional gas inlets. In one embodiment, an additional gas inlet is located between an analyte gas inlet and a light entrance optical coupling of the gas flow cell. In another embodiment, an additional gas inlet is located between an analyte gas outlet and a light exit optical coupling of the gas flow cell. In addition, enclosed regions may be formed adjacent seals of the gas flow channel of the gas flow cell. The enclosed regions may be evacuated and/or purged so as to minimize the passage of contaminants through the seals into the gas flow channel.Type: GrantFiled: June 12, 2018Date of Patent: June 9, 2020Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes
-
Patent number: 10641749Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: May 16, 2019Date of Patent: May 5, 2020Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 10338040Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: October 17, 2016Date of Patent: July 2, 2019Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 10302607Abstract: Analysis of chemically samples using gas chromatography (GC) separation with vacuum ultra-violet spectroscopy detection is described. One technique focuses on assigning a specific analysis methodology to each constituent in a sample. Constituents can elute from the GC by themselves or with other constituents, in which case a deconvolution is done using VUV spectroscopic data. In an exemplary embodiment, each constituent may be specifically included in an analysis method during a setup procedure, after which the same series of analyses are done on subsequent sample runs. The second approach essentially integrates an entire chromatogram by first reducing it into a series of analysis windows, or time slices, that are analyzed automatically. The analysis at each time slice determines the molecular constituents that are present as well as their contributions to the total response. Either approach can be used to quantify specific analytes or to do bulk classification.Type: GrantFiled: June 7, 2016Date of Patent: May 28, 2019Assignee: VUV Analytics, Inc.Inventors: Phillip Walsh, Dale A. Harrison, Sean H. Jameson, Jr.
-
Patent number: 9976996Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: October 17, 2016Date of Patent: May 22, 2018Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 9891197Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: September 8, 2016Date of Patent: February 13, 2018Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 9696286Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: September 8, 2016Date of Patent: July 4, 2017Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 9465015Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: November 11, 2014Date of Patent: October 11, 2016Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 9310292Abstract: A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.Type: GrantFiled: May 29, 2014Date of Patent: April 12, 2016Assignee: VUV Analytics, Inc.Inventors: Phillip Walsh, Anthony T. Hayes, Dale A. Harrison
-
Patent number: 9116158Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: GrantFiled: March 11, 2013Date of Patent: August 25, 2015Assignee: VUV Analytics, Inc.Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
-
Patent number: 8867130Abstract: A highly efficient polarization device for use in the VUV or shorter wavelength is provided. The polarization device may include a dispersive element capable of splitting an incident un-polarized beam of light into two beams of orthogonal linear polarization through introduction of an angular deviation. The polarization device may also include a focusing element capable of focusing at least a portion of one of the linearly polarized beams to a small region. Said polarization device may also incorporate a spatial aperture through which most of one of the beam passes, but through which most of the other does not.Type: GrantFiled: July 18, 2011Date of Patent: October 21, 2014Assignee: VUV Analytics, INc.Inventors: Dale A. Harrison, Anthony T. Hayes
-
Publication number: 20140192343Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.Type: ApplicationFiled: March 11, 2013Publication date: July 10, 2014Applicant: VUV ANALYTICS, INC.Inventor: VUV ANALYTICS, INC.
-
Patent number: 8773662Abstract: A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.Type: GrantFiled: July 18, 2011Date of Patent: July 8, 2014Assignee: VUV Analytics, Inc.Inventors: Phillip Walsh, Anthony T. Hayes, Dale A. Harrison