Patents Assigned to WABCO GmbH
-
Patent number: 11565681Abstract: A method for testing a pressure-medium-operated electronic brake system of a vehicle having a valve and sensor device including a control pressure inlet, a control pressure outlet, a plurality of valves selected from electrically activated inlet valves, outlet valves, redundancy valves, and pressure valves, an actual pressure sensor for measuring an actual control pressure, a setpoint pressure sensor for measuring a setpoint control pressure, and an electronic control unit, which has a signal-conducting connection to the electrically activated valves and pressure sensors, for receiving pressure signals and actuating the electrically activated valves, includes testing the setpoint pressure sensor while the control unit is in a passive operating mode, passing the setpoint control pressure directly through to the control pressure outlet, measuring the actual pressure at the control pressure outlet using a sensor, and transmitting the measured value to the control unit for plausibility checking against the setpoiType: GrantFiled: November 5, 2019Date of Patent: January 31, 2023Assignee: WABCO GmbHInventors: Dominika Dombek, Thilo Klostermann, Jann Löll, Jakob Friedrich Schmidt
-
Patent number: 11511711Abstract: An electronically controllable pneumatic brake system includes a service brake control module for controlling a first and a second service brake circuit, and a trailer control module with a trailer brake pressure connection point for connection to a trailer brake pressure coupling head. The trailer control module outputs a trailer brake pressure via the trailer brake pressure connection point. Upon a malfunction of the first and/or second service brake circuit, the first service brake pressure is controlled depending on the trailer brake pressure; and the second service brake pressure is controlled depending on the trailer brake pressure specified by the trailer control module; and/or the parking brake pressure is controlled directly or depending on the trailer brake pressure specified by the trailer control module. Upon a malfunction of the trailer control module, the trailer brake pressure is controlled depending on the first service brake pressure.Type: GrantFiled: March 20, 2018Date of Patent: November 29, 2022Assignee: WABCO GmbHInventor: Julian Van Thiel
-
Patent number: 11511719Abstract: An axle valve module of a compressed air brake system includes a relay valve with a control pressure input connected to a control pressure line which can be connected via a changeover valve alternately to a brake pressure line conducting an introduced brake pressure or to a reservoir pressure line conducting a reservoir pressure. ABS inlet and outlet valves are each formed as a pressure-controlled diaphragm valve with assigned pilot valve, wherein the pilot valves are configured as cyclically controllable 3/2-way magnetic switching valves, A shut-off valve is arranged in the control pressure line of the relay valve, between the changeover valve and the control pressure input of the relay valve or the branch point of a control pressure line of the ABS valves, via which shut-off valve the control pressure present at the control pressure input of the relay valve can be locked in as required.Type: GrantFiled: September 3, 2018Date of Patent: November 29, 2022Assignee: WABCO GmbHInventors: Rafal Bialon, Robert Otremba, Detlef Schmidt
-
Patent number: 11440521Abstract: An electropneumatic brake control module (1) for utility vehicles (100) includes a supply port (2) for connecting a compressed air supply (3); a first axle channel port (4); a pneumatically controlled inlet/outlet valve unit (10) for outputting a first braking pressure (PB1) at the first axle channel port (4); and an electropneumatic pilot control unit (8) for outputting at least one first control pressure (P1) at the inlet/outlet valve unit (10). The brake control module (1) further includes a redundancy pressure port (6) for receiving a redundancy pressure (PR) and a redundancy valve unit (12) connected to the redundancy pressure port (6) for outputting a redundancy braking pressure (PBR) at the first axle channel port (4) in the event that the electropneumatic pilot control unit (8) has a fault.Type: GrantFiled: March 25, 2019Date of Patent: September 13, 2022Assignee: WABCO GmbHInventor: Julian Van Thiel
-
Patent number: 11400906Abstract: An electropneumatic parking brake module (1) includes a supply connection (2), a spring-type actuator connection (4), an inlet-outlet valve unit (10) having a first switching position and a second switching position, and an electropneumatic pilot control unit (12) for outputting at least a first control pressure (p1) at the inlet-outlet valve unit (10). In the first switching position of the inlet-outlet valve unit (10), a spring brake pressure (pF) can be fed through directly from the supply connection (2) to the spring-type actuator connection (4) by virtue of the fact that the spring-type actuator connection (4) is connected to the supply connection (2), and, in the second switching position of the inlet-outlet valve unit (10), when the first control pressure (p1) is below a first threshold value, the spring-type actuator connection (4) is connected to a ventilating connection (14.3) of the inlet-outlet valve unit (10).Type: GrantFiled: May 29, 2018Date of Patent: August 2, 2022Assignee: WABCO GmbHInventors: Uwe Bensch, Julian Van Thiel
-
Patent number: 11333242Abstract: A piston-cylinder assembly (1) has a cylindrical housing (3), with a main piston (2) and at least one trailing piston (11, 12). The trailing piston (11, 12) is axially guided on a cylindrical outer lateral face (38) of the main piston (2). The trailing piston (11, 12) has a thrust portion (13, 14) at one end near a piston web on the main piston, The thrust portion extends axially inward toward the piston web (10) A travel limiter (28) on the cylindrical housing limits a travel range of the trailing piston (11, 12) Under pressure, the trailing piston (11, 12) follows the main piston (2) until the trailing piston (11, 12) hits the travel limiter (28). The thrust portion (13, 14) of the trailing piston (11, 12) is shaped to fit into an associated recess (30, 31) in the piston web with a positive lock.Type: GrantFiled: September 24, 2018Date of Patent: May 17, 2022Assignee: WABCO GmbHInventors: Hauke Karstens, Dennis Reimann
-
Patent number: 11255386Abstract: A clutch actuator (1) for actuating a vehicle clutch includes a cylinder (3) filled with pressure medium. An annular piston (4) is axially displaceably arranged in the cylinder. The annular piston (4) is fixedly operatively connected to a sliding sleeve (5) slidably mounted on a guide sleeve (6). A radially inner casing surface (16) of the annular piston (4) has an inner radius (Ri) and is arranged radially next to the guide sleeve (6). A sliding ring (18; 19) supports the sliding sleeve (5) on the guide sleeve (6). The sliding ring (18; 19; 18a) is inserted into a groove (27; 28) in the radially inner casing surface (16). In order to be able to mount undivided sliding rings, the groove (27; 28) has a single radially extending groove wall (29; 32) and is open toward an axially outer or inner end face (30; 33) of the annular piston (4).Type: GrantFiled: September 10, 2018Date of Patent: February 22, 2022Assignee: WABCO GmbHInventors: Frank-Peter Klück, Sankar Prasad Mishra, Tobias Schulz
-
Patent number: 11174953Abstract: A relay valve (1?) for a compressed-air system of a vehicle has a working pressure inlet, a working pressure outlet, a venting outlet and a controllable relay piston (19). The relay piston (19) is axially movably guided and, at one axial end, has an annular, radially inner valve seat (20). A sealing piston (9) is axially movably guided coaxially with respect to the relay piston (19). The sealing piston (9) is pushed by a compression spring (8) toward the relay piston (19) and an annular, radially outer valve seat (25), which is a part of a seat ring (24) fastened in an annular collar (23) of the housing bottom part (2). The seat ring (24) is a deep-drawn component shaped as a cylindrical pot of a metallic material. The radially outer valve seat (25) is an axially protruding annular web with a gable-shaped axial cross section.Type: GrantFiled: March 20, 2019Date of Patent: November 16, 2021Assignee: WABCO GmbHInventors: Karl-Heinz Riediger-Janisch, Reiner Hölscher, Gerhard Martini
-
Patent number: 11112003Abstract: In a device for sensing the position of a shift fork in a transmission, the shift fork is connected to a piston rod of a shifting piston which is guided axially in a shifting cylinder. The shift fork engages an axially slidable sliding sleeve, which slides on a transmission shaft, to engage or disengage a transmission stage. A magnet functioning as a signal generator is arranged on an actuating element, such as the switching piston, piston rod or shift fork. A 3D Hall sensor positionally fixed relative to the magnet functions as a signal receiver, sensing a magnetic field generated by the magnet. An electronic control unit connected to the 3D hall sensor determines the position of the shift fork from the relative positions of the magnet and 3D Hall sensor and transmits the position as a signal, taking into account linear, rotational, and/or pivoting movements of the actuating element.Type: GrantFiled: March 20, 2018Date of Patent: September 7, 2021Assignee: WABCO GmbHInventors: Stefan Groetzinger, Michael John, Dirk Müntefering, Romain Poux
-
Patent number: 11072217Abstract: In a pneumatically sprung vehicle (1) with a front steering axle (A), one rear drive axle (TA) and one trailing axle (SA), traction is controlled by an air suspension system (36), having a “pressure ratio control” mode maintaining a parametrised ratio of air pressures in supporting bellows (2, 4) of the drive axle (TA) compared to air pressures in supporting bellows (3, 5) of the trailing axle (SA); a “relieve loading of trailing axle” mode checking whether relieving of the loading of the trailing axle (SA) is possible without overloading the drive axle (TA); and an “optimum traction” control mode increasing the pressure in the supporting bellows (2, 4) of the drive axle (TA) and reducing the pressure in the supporting bellows (3, 5) of the trailing axle (SA) without exceeding the maximum permissible axle load of the drive axle (TA) while maintaining residual pressure of the trailing axle (SA).Type: GrantFiled: May 22, 2014Date of Patent: July 27, 2021Assignee: WABCO GmbHInventor: Uwe Lentz
-
Patent number: 11060538Abstract: An actuator (1) for an automated or automatic transmission has a cylinder housing (3), a piston unit (2), and a piston rod (13). The piston unit (2) is coupled to the piston rod (13) and is arranged movably in the cylinder housing (3) along a longitudinal axis (4). The piston unit (2) separates two pressure chambers (8, 9) of variable volume in the cylinder housing (3). The pressure chambers are configured to load the piston unit (2) with compressed air on both sides. The two pressure chambers (8, 9) are connected to a valve unit (14) for switching between pressurization and purging of each of the two pressure chambers (8, 9). An end stop clamping device for damping at least one end stop of the piston unit (2) is arranged in the actuator (1). A pneumatically and a mechanically operating damping stage are provided improve the end stop damping device.Type: GrantFiled: March 20, 2018Date of Patent: July 13, 2021Assignee: WABCO GmbHInventors: Romain Poux, Timo Gerlach, Dennis Reimann
-
Patent number: 10960862Abstract: A method for electronically setting the brake force distribution of a desired total braking force in partial braking forces to the axle of a motor vehicle in dependence on the differential slip is provided. The differential slip is detected as the difference of the slip values of a variable representing the slip at the respective axle and is assigned to a relevant pair of axles. One of the axles is selected as a reference axle and the respective differential slip of a pair of axles is determined as the difference of the slip value at the reference axle and of the respective slip value of one of the further axles.Type: GrantFiled: April 24, 2018Date of Patent: March 30, 2021Assignee: WABCO GMBHInventors: Nikolai Flaum, Torsten Wallbaum
-
Patent number: 10960724Abstract: A compressed air supply installation includes a compressed air supply, a compressed air port to a pneumatic installation, a vent port to a venting environment, and a pneumatic main line between the compressed air supply and the compressed air port. The pneumatic main line includes an air dryer. The installation further includes a vent valve arranged in the pneumatic main line, the vent valve being a first pilot valve having a pilot control port, a compressor having at least one compressor stage, and a second pilot valve and a pneumatic pilot control channel that pneumatically connects the second pilot valve to the pilot control port of the first pilot valve. A pressure-holding pneumatic valve device is connected to the pilot control port of the first pilot valve and is configured to provide a control pressure for the pilot control port of the first pilot valve.Type: GrantFiled: September 13, 2018Date of Patent: March 30, 2021Assignee: WABCO GMBHInventor: Joerg Meier
-
Patent number: 10961999Abstract: A method for operating a pressure control system having a multi-stage compressor includes providing a multiply compressed pressure medium by the multi-stage compressor for filling a pressure medium reservoir or pressure medium chambers of the pressure control system. Providing the multiply compressed pressure medium includes (i) providing, by a first compression stage, a pre-compressed pressure medium and additionally compressing, at least by a second compression stage, the pre-compressed pressure medium, and/or (ii) introducing an already-compressed charging pressure medium into an intermediate volume between the first compression stage and the second compression stage of the multi-stage compressor and further compressing the charging pressure medium at least by the second compression stage.Type: GrantFiled: April 12, 2018Date of Patent: March 30, 2021Assignee: WABCO GMBHInventor: Uwe Stabenow
-
Patent number: 10946848Abstract: An electropneumatic parking brake module includes a supply port configured to connect a compressed air supply, a spring brake actuator port configured to connect at least one spring brake cylinder, and a trailer control port, an inlet-outlet valve unit configured to control a spring brake pressure, and an electropneumatic pilot control unit configured to control at least one control pressure at the inlet-outlet valve unit and configured to perform a trailer control position function. The electropneumatic pilot control unit includes a 3/3-way valve that has a first switching position in which the at least one control pressure is controlled, a second switching position in which the trailer control position function is carried out, and a third switching position in which the inlet-outlet valve unit and the trailer control port are connected to a vent.Type: GrantFiled: August 30, 2018Date of Patent: March 16, 2021Assignee: WABCO GMBHInventor: Julian Van Thiel
-
Patent number: 10933854Abstract: A brake module for a hydraulically braked tractor coupled to a pneumatically braked trailer has a trailer control valve connected via hydraulic control inlet to a hydraulic pressure line leaving a master brake cylinder, and via pneumatic inlet to a compressed air reservoir. Hydraulic control pressure determines pneumatic output pressure level at a trailer control valve pneumatic outlet. The brake module has a break-off prevention module which, if the control line leaks or separates from the trailer control valve relative to the trailer brake system, closes a supply pressure coupling head supply line and causes trailer brake system venting. The break-off prevention module has a pneumatic supply pressure inlet and a pneumatic tear-off control pressure inlet connected to the air reservoir independently of trailer control valve pressure inlets. Supply pressure inlet supply pressure passes through the break-off prevention module and feeds to a trailer control valve pneumatic supply pressure inlet.Type: GrantFiled: October 15, 2018Date of Patent: March 2, 2021Assignees: WABCO GmbH, AGCO International GmbHInventors: Mirko Bruett, Georg Frank, Stefan Prestel, Jan Spremberg
-
Patent number: 10933852Abstract: A fluid-operated braking system (1) for a tractor-trailer vehicle includes a trailer control valve (2), a parking brake module (3), and an electronic control unit (4) electrically connected to the trailer control valve (2) and to the parking brake module (3). A pressure fluid accumulator (13) of the braking system (1) is connected to a control pressure input (P43) of the trailer control valve (2). A redundancy circuit controls the control pressure input (P43), even during a malfunction of the control unit (4). The parking brake module (3) includes a control valve (14), a redundancy valve (15) and a changeover valve (16) controlled by an electronic switch unit (20) with a holding function. When the control unit (4) malfunctions, the last error-free switching position of the control valve (14) or the redundancy valve is maintained until a operationally safe resting state is reached or the ignition system is switched off.Type: GrantFiled: February 22, 2019Date of Patent: March 2, 2021Assignee: WABCO GmbHInventors: Andreas Goers, Thomas Müller, Jakob Friedrich Schmidt
-
Patent number: 10926587Abstract: A tire pressure regulating system is disclosed for adjusting tire pressures of pneumatic tires of vehicle wheels of a plurality of vehicle axles of a motor vehicle while driving. The tire pressure regulating system comprises: at least one switchover valve, an axle valve, a wheel valve and a valve. A motor vehicle comprising the tire pressure regulating system is also disclosed.Type: GrantFiled: January 30, 2018Date of Patent: February 23, 2021Assignee: WABCO GMBHInventors: Michael Haverkamp, Dennis Sabelhaus, Thomas Stellmacher
-
Patent number: 10899331Abstract: A hydraulic actuator for supplying a hydraulic brake pressure to service brakes of a vehicle includes an actuator cylinder including a piston. A hydraulic working pressure of a brake fluid can be set in accordance with a position of the piston. The brake fluid is supplied from a hydraulic reservoir assigned to the hydraulic cylinder, and the hydraulic working pressure prevails in a working space of the actuator cylinder and can be output via an actuator output port on the actuator cylinder in order to supply a hydraulic brake pressure in accordance with the hydraulic working pressure. The hydraulic actuator further includes an electrically controllable motor. A rotary motion brought about by the electrically controllable motor can be converted by a conversion mechanism into a translational motion of the piston parallel to a longitudinal direction thus enabling a hydraulic brake pressure to be supplied by electric control of the motor.Type: GrantFiled: July 11, 2018Date of Patent: January 26, 2021Assignee: WABCO GMBHInventor: Thomas Dieckmann
-
Patent number: 10888890Abstract: A cleaning device for selectively bombarding a surface with a media sequence of at least a first medium and a second medium. The cleaning device includes a nozzle configured to bombard the surface with the second medium and a cleaning valve having a holding port, a pressure port, a plunger, and a pressure outlet. The cleaning device further includes a high-pressure accumulator configured to store the first medium, which is loaded with an accumulator pressure, and a changeover valve configured to selectively create a connection between a first medium supply line and a holding line connected to the holding port. The pressure outlet is configured to bombard the surface with the first medium in pulse-like fashion.Type: GrantFiled: September 6, 2018Date of Patent: January 12, 2021Assignee: WABCO GMBHInventors: Jan Fiebrandt, Helge Westerkamp