Patents Assigned to Washington University in St. Louis
  • Publication number: 20210000471
    Abstract: An arteriovenous graft and methods of reducing the risk of graft thrombosis and extending patency of the arteriovenous graft are provided herein. The arteriovenous graft is operable for attaching to a vein at a venous anastomosis. In some aspects, the arteriovenous graft includes a plurality of grooves at a venous anastomosis end of the arteriovenous graft and the venous anastomoses may be arranged such that the arteriovenous graft and the vein meet at an angle of 30° or less.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 7, 2021
    Applicant: Washington University, St. Louis, MO
    Inventors: Mohamed Zayed, Dillon Williams, Guy Genin, Eric Leuthardt
  • Patent number: 10813941
    Abstract: A pharmaceutical composition includes a small molecule and a pharmaceutically acceptable excipient. The small molecule interacts with a deoxyxylulose phosphate reductoisomerase (Dxr). A method for treating or preventing a microbial infection in a subject in need thereof includes administering the pharmaceutical composition. A method for inhibiting the growth of a eukaryotic pathogen includes contacting the eukaryotic pathogen with an effective amount of the pharmaceutical composition.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: October 27, 2020
    Assignees: The George Washington University, A Congressionally Chartered Not-For-Profit Corporation, Washington University in St. Louis
    Inventors: Cynthia Dowd, Audrey Odom, Rachel Edwards, Robert Brothers
  • Publication number: 20200140469
    Abstract: The present disclosure relates to novel compounds, pharmaceutical compositions, and methods for treating or preventing microbial infection caused by parasites or bacteria, such as Plasmodium falciparum or related Plasmodium parasite species and Mycobacterium tuberculosis or related Mycobacterium bacteria species. The compounds are ?,?-unsaturated analogs of fosmidomycin and can inhibit deoxyxylulose phosphate reductoisomerase (Dxr) in many microbes, such as P. falciparum.
    Type: Application
    Filed: June 27, 2018
    Publication date: May 7, 2020
    Applicants: The George Washington University, Washington University in St. Louis, George Mason University, Saint Louis University
    Inventors: Cynthia Dowd, Xu WANG, Robert Carl BROTHERS, Audrey Ragan Odom JOHN, Rachel EDWARDS, Marvin MEYERS, Stacy ARNETT, Robin COUCH, Kenneth HEIDEL
  • Publication number: 20190090801
    Abstract: Provided are implantable, injectable and/or surface mounted biomedical devices and related methods for interfacing with a target tissue. The devices have a substrate, one or more microfluidic channels embedded in or supported by the substrate and a fluid actuator in operational communication with one or more reservoirs and responsive to a wireless control signal. The components of the device are specially configured and packaged to be ultra-thin and mechanically compliant. In some embodiments, the devices are self-powered and fully implantable. The devices can be shaped to provide injection in a minimally invasive manner, thereby avoiding unnecessary tissue damage and providing a platform for long-term implantation for interfacing with biological tissue.
    Type: Application
    Filed: July 1, 2016
    Publication date: March 28, 2019
    Applicants: WASHINGTON UNIVERSITY IN ST. LOUIS, The Board of Trustee of the University of Illinois
    Inventors: John A. ROGERS, Michael Raymond BRUCHAS, Jaewoong JEONG, Jordan Gary MCCALL
  • Patent number: 10241110
    Abstract: Plasmonic nanotransducers, methods of preparing plasmonic nanotransducers, and methods for label-free detection of target molecules are disclosed. The plasmonic nanotransducers include hollow nanostructure cores and artificial antibodies. The plasmonic nanotransducers are exposed to a biological sample that can contain the specific target molecules. The plasmonic nanotransducers can be analyzed with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the target molecule in the sample.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Washington University in St. Louis
    Inventors: Srikanth Singamaneni, Limei Tian, Keng-Ku Liu, Abdennour Abbas, Jeremiah J. Morrissey, Evan D. Kharasch
  • Publication number: 20190030056
    Abstract: A pharmaceutical composition includes a small molecule and a pharmaceutically acceptable excipient. The small molecule interacts with a deoxyxylulose phosphate reductoisomerase (Dxr). A method for treating or preventing a microbial infection in a subject in need thereof includes administering the pharmaceutical composition. A method for inhibiting the growth of a eukaryotic pathogen includes contacting the eukaryotic pathogen with an effective amount of the pharmaceutical composition.
    Type: Application
    Filed: January 23, 2017
    Publication date: January 31, 2019
    Applicants: THE GEORGE WASHINGTON UNIVERSITY, A CONGRESSIONALL A CONGRESSIOY CHARTERED NOT-FOR-PROFIT CORPORATIO, WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Cynthia DOWD, Audrey ODOM, Rachel Edwards, Robert BROTHERS
  • Patent number: 9980660
    Abstract: A non-transitory computer readable medium stores instructions that, when executed by at least one processor, cause the at least one processor to perform a method that includes computing a transfer matrix representing a relative influence that each respective electrode location for measuring electrical potentials on a patient's body has on an estimation of electrical potentials for locations on a surface of interest prior to the measuring of electrical potentials at the respective electrode locations and receiving electrical potential measurements measured via a plurality of electrodes at respective electrode locations on the patient's body. The method also includes computing the estimation of electrical potentials for the locations on the surface of interest based at least in part on the received electrical potential measurements and the computed transfer matrix and generating image data representing the estimation of electrical potentials.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: May 29, 2018
    Assignee: Washington University in St. Louis
    Inventors: Yoram Rudy, Yong Wang
  • Patent number: 9410949
    Abstract: Natural and/or synthetic antibodies for specific proteins are adhered to nanoparticles. The nanoparticles are adhered to a substrate and the substrate is exposed to a sample that may contain the specific proteins. The substrates are then tested with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the specific protein in the sample.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 9, 2016
    Assignee: Washington University in St. Louis
    Inventors: Srikanth Singamaneni, Evan Kharasch, Jeremiah J. Morrissey, Chang Hee Lee
  • Patent number: 9259166
    Abstract: A computer-implemented method for electrocardiographic imaging (ECGI) is provided. The method includes computing a transfer matrix, measuring a plurality of electrical potentials, and computing an estimation of electrical potentials on a surface of interest based at least in part on the measured potentials and the computed transfer matrix. The transfer matrix computing step is performed prior to the measuring step.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 16, 2016
    Assignee: Washington University in St. Louis
    Inventors: Yoram Rudy, Yong Wang
  • Patent number: 9095601
    Abstract: A functional biologically active particle conjugate useful for diagnosis and treating cancer as a bioportal comprises a nanoscale particle having associated therewith an intracellular targeting ligand comprising a PNA, or another nuclease resistant oligonucleotide analog such as MOE-mRNA (2?-methoxyethyl mRNA) or LNA (locked nucleic acid), having a sequence that binds selectively to an uniquely expressed or overexpressed mRNA specific to the cancer or disease state in a living mammal. In one aspect the uniquely overexpressed target specific to the cancer or disease state is the unr mRNA which can be targeted by the antisense sequence PNA50.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: August 4, 2015
    Assignee: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Matthew L. Becker, Huafeng Fang, Xiaoxu Li, Dipanjan Pan, Raffaella Rossin, Xiankai Sun, John Stephen Taylor, Jeffrey L. Turner, Michael John Welch, Karen L. Wooley
  • Publication number: 20150185187
    Abstract: A probe for use with an imaging system, including a scanning device configured to receive a first light beam from a light source, a beam-divider configured to split the first light beam into a plurality of second light beams, and a focusing device configured to focus each of the second light beams on respective locations in an object of interest is disclosed.
    Type: Application
    Filed: March 5, 2015
    Publication date: July 2, 2015
    Applicant: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Lihong Wang, Liang Song, Konstantin Maslov, Bin Rao
  • Publication number: 20150141767
    Abstract: Provided are devices and methods capable of interfacing with biological tissues, such as organs like the heart, in real-time and using techniques which provide the ability to monitor and control complex physical, chemical, biochemical and thermal properties of the tissues as a function of time. The described devices and methods utilize micro scale sensors and actuators to spatially monitor and control a variety of physical, chemical and biological tissue parameters, such as temperature, pH, spatial position, force, pressure, electrophysiology and to spatially provide a variety of stimuli, such as heat, light, voltage and current.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 21, 2015
    Applicants: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: John A. ROGERS, Igor EFIMOV, Sarah GUTBROD, Lizhi XU, Andrew BONIFAS, Richard Chad WEBB, Ahyeon KOH
  • Patent number: 8889378
    Abstract: The invention provides methods for identifying a compound that inhibits cytochrome c synthesis. This invention further provides a method for the high throughput screening of compounds that inhibit cytochrome c synthesis.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: November 18, 2014
    Assignee: Washington University in St. Louis
    Inventor: Robert Kranz
  • Publication number: 20140234841
    Abstract: In one aspect, the disclosure provides isolated nucleic acids, polypeptides, primers, and probes for the detection of mutations in a nucleic acid sequence for a DICER1 polypeptide.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicants: Children's Hospital and Clinics of Minnesota, The Washington University in St. Louis
    Inventors: Ashley D. Hill, Paul Goodfellow, John R. Priest, Yoav Messinger
  • Patent number: 8597893
    Abstract: A novel function phospholipase A2, referred to herein as calcium-independent phospholipase A2? (iPLA2?) having SEQ ID NO: 1 and SEQ ID NO: 2, and nucleic acid sequences (SEQ ID NO: 3 and SEQ ID NO: 4) encoding and expressing iPLA2? is disclosed. This novel enzyme has been isolated and characterized and is involved in the catalysis and hydrolysis of lipids cycling in a living cell biosystem. In an embodiment, the iPLA2? polypeptide is encoded and expressed by an isolated nucleic acid molecule comprising a set of iPLA2? polynucleotides. In one aspect, an isolated and characterized gene comprises a polynucleotide having a sequence shown in SEQ ID NO: 3 and SEQ ID NO: 4.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: December 3, 2013
    Assignee: Washington University In St. Louis
    Inventors: Richard W. Gross, Christopher M. Jenkins
  • Patent number: 8591562
    Abstract: A device for cooling the central nervous system (e.g., the brain) is disclosed that is specifically designed to provide cooling of an injured central nervous system for neuroprotective, antiepileptogenic, and/or antiepileptic treatments. In one embodiment, a portion of the cooling device is placed in a recess formed by removal of a portion of a patient's skull. An embedded heat-collecting portion of the cooling device is formed to fit in the location of the formed recess and a thermally conductive material of the heat-collecting portion is placed adjacent the dura mater to provide the desired degree of cooling. A heat-dissipating external plate is in thermal contact with the internal plate, and can be selectively sized according to a specific purpose.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 26, 2013
    Assignees: University of Washington, Regents of the University of Minnesota, Washington University in St. Louis
    Inventors: Raimondo D'Ambrosio, Matthew Smyth, Steven Mark Rothman, John W. Miller, Jason Fender
  • Patent number: 8580517
    Abstract: G protein biosensors comprising mammalian G protein subunits fused to fluorescent proteins emitting a FRET signal expressed in living intact functional cells. The intensity of the FRET signal is strongly responsive to the activation state of the biosensors. The biosensors respond reproducibly to agonist and antagonist drug molecules specific for G protein coupled receptors. The biosensors have utility in identifying and classifying candidate therapeutic drugs as to their therapeutic value.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: November 12, 2013
    Assignee: Washington University in St. Louis
    Inventors: Narasimhan Gautam, Inaki Azpiazu
  • Publication number: 20130225791
    Abstract: A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
    Type: Application
    Filed: August 25, 2011
    Publication date: August 29, 2013
    Applicant: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: David E. Reichert, Paul J.A. Kenis, Tobias D. Wheeler, Amit V. Desai, Dexing Zeng, Birce C. Önal
  • Publication number: 20130004541
    Abstract: A growth factor delivery scaffold combines a heparin/fibrin-based delivery system (HBDS) with a backbone based on polymer nanofibers for tissue (e.g., tendon and ligament) repair. The scaffold has improved surgical handling properties compared to the gelatinous consistency of the prior art HBDS system and retains the capability for delivering mesenchymal cells and controlling the release of growth factors. One application for the scaffold is mesenchymal stem cell (MSC) therapy for flexor tendon repair. The scaffold can deliver growth factors in a sustained manner, can be implanted for flexor tendon repair, is biocompatible, and is not cytotoxic. The growth factor delivery scaffold may also be used in the surgical repair of an injury to bone, muscle, cartilage, or other tissues.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 3, 2013
    Applicant: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Stavros Thomopoulos, Shelly Sakiyama-Elbert, Matthew Silva, Richard Gelberman, Younan Xia, Andrea Schwartz, Jingwei Xie
  • Publication number: 20120307037
    Abstract: A microscope assembly includes an illumination source coupled to an optical assembly by a coupler. The optical assembly includes an objective with optics that move along an optic axis. The illumination source generates a light blade that illuminates a portion of a sample at an illumination plane. The light blade induces a fluorescent emission from the sample that is projected through the objective optics to a detector. The focal plane of the objective optics is fixed with respect to the illumination source by the coupler so that the illumination plane is coincident with the focal plane as the objective optics move along the optic axis. The objective and illumination may be rapidly scanned along the optic axis to provide rapid three-dimensional imaging while the objective and illumination may also be rapidly scanned along the optic axis to provide rapid three-dimensional imaging.
    Type: Application
    Filed: August 1, 2012
    Publication date: December 6, 2012
    Applicant: Washington University in St. Louis
    Inventors: Timothy E. Holy, Terrence F. Holekamp