Patents Assigned to Water Solutions, Inc.
  • Publication number: 20130211601
    Abstract: A pressure and flow calculation technique that efficiently solves for pressures and flows within a process network uses both a simultaneous and a sequential solving method. The calculation technique first determines a flow conductance for each of the process network elements, linearizes pressure and flow relationships in each flow path by determining a linearized flow conductance for each process element and then determines a composite process network having a linearized, composite process component in each flow path to produce a simplified process network. A simultaneous solving method is then used to simultaneously solve for the pressures and flows at each of a set of junction nodes of the simplified process network and thereafter a sequential solving method is applied to determine the pressures and flows at the other nodes of the process network.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Xu Cheng, Kirt T. Bush
  • Patent number: 8509924
    Abstract: An integrated optimization and control technique performs process control and optimization using stochastic optimization similar to the manner in which biological immune systems work, and thus without the use of historical process models that must be created prior to placing the control and optimization routine in operation within a plant. An integrated optimization and control technique collects various indications of process control states during the on-line operation of the process, and attempts to optimize the process operation by developing a series of sets of process control inputs to be provided to the process, wherein the control inputs may be developed from the stored process control states using an objective function that defines a particular optimality criteria to be used in optimizing the operation of the process.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 13, 2013
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Jeffrey J. Grott, Jeffery J. Williams, Konrad Swirski, Tomasz Chomiak, Konrad Wojdan
  • Publication number: 20130204587
    Abstract: A pressure and flow calculation technique can be used in a distributed process network simulation system that uses the sequential solving method to perform better or faster simulations of a process flow, especially with respect to process junction nodes at which flow either converges or diverges. The pressure and flow variable determination technique uses a grouped node identification technique that identifies a local set of nodes for each junction node of the process network to use when solving for the pressure at the junction node, a grouped node iteration technique that uses the grouped set of nodes at each junction node to perform iterative pressure calculations at the junction node, and a flow-based pressure calibration technique at each junction node to enable the system to perform highly accurate pressure and flow variable determination at each junction node in real-time.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS INC.
    Inventors: Xu Cheng, Chengtao Wen
  • Publication number: 20130191106
    Abstract: A system and method for operating a remote plant simulation system is disclosed. The system and method uses a light application at the plant to collect relevant data and communicate it to a remote plant simulation. The remote plant simulation uses the relevant data, including data from the actual process, to create a process simulation and communicate the display data to the light application operating at the plant where it is displayed to a user. The remote system offers the advantage of offering decreased cost and improved simulation as the equipment cost, operator cost and set up cost is shared by a plurality of users. Further, the data may be stored remotely and subject to data analytics which may identify additional areas for efficiency in the plant.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Richard W. Kephart, Herman Sanchez, Eugene Abruzere
  • Patent number: 8486275
    Abstract: An automated water treatment system and methods for treating raw water to produce potable water are disclosed. The system is a self-contained portable water treatment system having several selectable treatment subsystems and a controller which automatically selects and controls the mode of operation from a transient, normal or backwashing mode, automatically controls the flow of water through a treatment path based upon the selected mode of operation and the measured water quality characteristics of the water at selected locations, automatically determines, based upon the selected mode of operation and the water quality parameter measurements, which of the plurality of the selectable subsystems is needed to produce potable water at the output; and automatically direct the flow of water through a treatment path through the system to bypass the water treatment subsystems and elements that are not needed to produce potable water.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Omni Water Solutions, Inc.
    Inventor: Wayne Allan Wolf
  • Publication number: 20130110298
    Abstract: Embodiments of methods and systems for controlling a load generated by a power generating system may include controlling at least a portion of the system using model-based control techniques. The model-based control techniques may include a dynamic matrix controller (DMC) that receives a load demand and a process variable as inputs and generates a control signal based on the inputs and a stored model. The model may be configured based on parametric testing, and may be modifiable. Other inputs may also be used to determine the control signal. In an embodiment, a turbine is controlled by a first DMC and a boiler is controlled by a second DMC, and the control signals generated by the first and the second DMCs are used in conjunction to control the generated load. Techniques to move the power generating system from Proportional-Integral-Derivative based control to model-based control are also disclosed.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS , INC.
    Inventor: Robert A. Beveridge
  • Patent number: 8433450
    Abstract: An optimization and control system for a utility plant that uses fan based air cooled condensers controls the operation of the power generation system at the plant in conjunction with the operation of the air cooled condensers so as to run the power plant at an optimum operating point associated with minimizing or reducing the cost energy produced by the plant. The optimization and control system includes an optimizer having a numerical solver that determines values for a set of control variables associated with an optimal operating point of the plant and an expert system that oversees and modifies the control variable settings prior to providing these settings to a plant controller. The numerical solver uses an objective function and one or more models of plant equipment to determine the operating point of the plant that minimizes the cost per unit of useful energy generated by the plant.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 30, 2013
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Peter N. Francino, Frederick C. Huff, Harry Robert Winn, David Glen Foster
  • Patent number: 8359112
    Abstract: The present invention relates generally to process control systems and devices and, more particularly, to an apparatus for and a method of implementing redundant controller synchronization for bump-less failover during normal and mismatch conditions at the redundant controllers. The redundant controllers are configured to transmit state information of the process control areas of the primary controller to the backup controller that is necessary for synchronizing the redundant controllers but is not typically transmitted to other devices during the performance of process control functions. Synchronization messages are transmitted from the primary controller to the backup controller each time one of the control areas executes to perform process control functions.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: January 22, 2013
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Richard W. Kephart, Kimberly Costlow, Michael Durbin, Xu Cheng, Richard Brown
  • Patent number: 8290631
    Abstract: Example methods and apparatus to arbitrate valve position sensor redundancy are disclosed. A disclosed example method comprises measuring a first value representative of a position of a valve, measuring a second value representative of the position of the valve, computing a first estimated position of the valve, selecting one of the first and second values based on the first estimated position, and generating a first valve control signal for the valve based on the selected one of the first and second values.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 16, 2012
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Thomas Sweeney, Scott Shaw, Peter Nicholas Francino
  • Patent number: 8200369
    Abstract: A technique of implementing performance monitoring in a power plant is appropriate to control operating parameters and factors connected with the efficiency of the energy production process in an energy marketplace that is more complex than in the past, and that takes variable costs besides the cost of fuel into account, e.g., environmental credits, equipment degradation and repair costs, electrical energy trade market factors like ramp rate, LMP (Locational Marginal Pricing) factors, the ability to deliver contracted power levels and spot transactions, etc. The technique applies a statistical analysis to collected power plant data to determine the factors that are best controlled or changed to affect (increase) the efficiency or other primary performance indication of the plant, as well as to establish baseline or best-possible operational constraints to be used to control the plant in the future.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 12, 2012
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Xu Cheng, Frederick C. Huff, Peter N. Francino, Konrad Swirski
  • Patent number: 8140296
    Abstract: A statistical performance evaluation system for a thermodynamic device and process uses the achievable performance derived from statistics and real-time data for the device or process to evaluate the current performance of the device or process, and to adjust the operations of the device or process accordingly, or provide feedback to an operator or other monitoring system for taking corrective actions to obtain performance approaching the optimum achievable performance. The achievable performance of the device or process is derived from data collected during operational periods when the best achievable performance is anticipated, such as after maintenance is performed, and supersedes the ideal or design performance specified by the manufacturer, which typically does not represent the actual operating conditions in the field, as the basis for evaluating the real-time performance of the device.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: March 20, 2012
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Peter N. Francino, Xu Cheng, Frederick C. Huff
  • Publication number: 20120040299
    Abstract: A technique of controlling a steam generating boiler system using dynamic matrix control includes preventing saturated steam from entering a superheater section. A dynamic matrix control block uses a rate of change of a disturbance variable, a current output steam temperature, and an output steam setpoint as inputs to generate a control signal. A prevention block modifies the control signal based on a saturatec temperature and an intermediate steam temperature. In some embodiments, the control signal is modified based on a threshold and/or an adjustable function g(x). The modified control signal is used to control a field device that, at least in part, affects the intermediate steam and output steam of the boiler system. In some embodiments, the prevention block is included in the dynamic matrix control block.
    Type: Application
    Filed: February 7, 2011
    Publication date: February 16, 2012
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Robert A. Beveridge, Richard J. Whalen, JR.
  • Publication number: 20120040298
    Abstract: A technique of controlling a steam generating boiler system includes using a rate of change of disturbance variables to control operation of a portion of the boiler system, and in particular, to control a temperature of output steam to a turbine. The technique uses a primary dynamic matrix control (DMC) block to control a field device that, at least in part, affects the output steam temperature. The primary DMC block uses the rate of change of a disturbance variable, a current output steam temperature, and an output steam temperature setpoint as inputs to generate a control signal. A derivative DMC block may be included to provide a boost signal based on the rate of change of the disturbance variable and/or other desired weighting. The boost signal is combined the control output of the primary DMC block to more quickly control the output steam temperature towards its desired level.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Robert A. Beveridge, Richard J. Whalen, JR.
  • Publication number: 20120036852
    Abstract: A technique of controlling a steam generating boiler system includes dynamically tuning a rate of change of a disturbance variable (DV) to control operation of a portion of the boiler system, and in particular, to control a temperature of output steam to a turbine. The rate of change of the DV is dynamically tuned based on a magnitude of an error or difference between an actual and a desired level of an output parameter, e.g., output steam temperature. In an embodiment, as the magnitude of the error increases, the rate of change of the DV is increased according to a function f(x). A dynamic matrix control block uses the dynamically-tuned rate of change of the DV, a current output parameter level, and an output parameter setpoint as inputs to generate a control signal to control a field device that, at least in part, affects the output parameter level.
    Type: Application
    Filed: February 7, 2011
    Publication date: February 16, 2012
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Robert A. Beveridge, Richard J. Whalen, JR.
  • Patent number: 8110106
    Abstract: An apparatus for the anaerobic digestion of solid waste is disclosed. The apparatus includes a pre-digestion treatment chamber and an anaerobic digester chamber coupled to the pre-digestion treatment chamber. A liquid suspension of solid waste is pretreated under aerobic conditions by heating to a desired pre-digestion temperature. One or more chemical or biological additives are added to the suspension of solid waste to improve the anaerobic digestibility of the solid waste. This may include enzymes to destruct poorly digestible solids and/or materials to provide a desired C:N ratio in the solid waste. The apparatus may include mixers, heaters, chemical or biological additives as needed, various sensors and probes, and a control system to monitor and control the anaerobic digestion process and maintain microbial health of the digester.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: February 7, 2012
    Assignee: Water Solutions, Inc.
    Inventors: Stephen D. Allen, Dallas K. Isom
  • Patent number: 8104283
    Abstract: A technique of controlling a boiler system such as that used in a power generation plant includes using manipulated variables associated with or control inputs to a reheater section of the boiler system to control the operation of the furnace, and in particular to control the fuel/air mixture provided to the furnace or the fuel to feedwater ratio used in the furnace or boiler. In the case of a once-through boiler type of boiler system, using the burner tilt position, damper position or reheater spray amount to control the fuel/air mixture or the fuel to feedwater flow ratio of the system provides better unit operational efficiency.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: January 31, 2012
    Assignee: Emerson Process Management Power & Water Solutions, Inc.
    Inventors: Xu Cheng, Charles H. Menten, Richard W. Kephart
  • Publication number: 20120010758
    Abstract: An energy management system uses an expert engine and a numerical solver to determine an optimal manner of using and controlling the various energy consumption, producing and storage equipment in a plant/communities in order to for example reduce energy costs within the plant, and is especially applicable to plants that require or that are capable of using and/or producing different types of energy at different times. The energy management system operates the various energy manufacturing and energy usage components of the plant to minimize the cost of energy over time, or at various different times, while still meeting certain constraints or requirements within the operational system, such as producing a certain amount of heat or cooling, a certain power level, a certain level of production, etc.
    Type: Application
    Filed: May 20, 2011
    Publication date: January 12, 2012
    Applicant: EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Peter N. Francino, Frederick C. Huff, David G. Foster
  • Publication number: 20120010757
    Abstract: An energy management system uses an expert engine and a numerical solver to determine an optimal manner of using and controlling the various energy consumption, producing and storage equipment in a plant/communities in order to for example reduce energy costs within the plant, and is especially applicable to plants that require or that are capable of using and/or producing different types of energy at different times. The energy management system operates the various energy manufacturing and energy usage components of the plant to minimize the cost of energy over time, or at various different times, while still meeting certain constraints or requirements within the operational system, such as producing a certain amount of heat or cooling, a certain power level, a certain level of production, etc.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 12, 2012
    Applicant: EMERSON PRCESS MANAGEMENT POWER & WATER SOLUTIONS, INC.
    Inventors: Peter N. Francino, Frederick C. Huff
  • Patent number: 8075876
    Abstract: Methods of treating animal litter and/or bedding material for control of volatile ammonia and soluble phosphorous include applying granular partially hydrated ferric sulfate to the litter. The partially hydrated ferric sulfate ranges from gray to tan in color and is spread onto the litter at a rate effective to reduce ammonia volatilization and reduce soluble phosphorous. Relative to reagent grade ferric sulfate, the partially hydrated ferric sulfate exhibits lower hygroscopicity and higher deliquescence. The ferric sulfate is prepared by a process comprising oxidizing ferrous sulfate with sulfuric acid using a molecular oxygen oxidizing agent at an elevated pressure relative to atmospheric and at a temperature of 60° C. to 140° C. to produce a gray to tan colored granular product.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: December 13, 2011
    Assignee: Kemira Water Solutions, Inc.
    Inventors: Jan J. Pavlicek, Victor Johnson
  • Patent number: D667077
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 11, 2012
    Assignee: Enviro Water Solutions, Inc.
    Inventors: Ronald E. Stanley, Richie E. Stanley, Chad C. Galloway