Abstract: An approach for accurately setting a duty cycle of PA switching waveforms uses an all-digital PVT sensor circuit. In various embodiments, the all-digital PVT sensor circuit measures a pulse width of a periodic reference signal using digital delay line, and subsequently, implements an off-chip digital calculation to program the digital delay line to delay this periodic reference signal so that, when the delayed periodic reference signal is combined with the original (undelayed) reference via a logical AND operation, the resulting signal conforms to a desired duty cycle. In one implementation, the PA is a class-D PA, which may have a single-ended configuration or a differential configuration having two single-ended structures operating in opposite phases.
Abstract: Various approaches of receiving signals in integrated circuitry include implementing two successive stages of signal manipulation and employing an interface having an AC coupling network and buffer circuits for decoupling the output impedance and common-mode level of the first stage of signal manipulation from the input impedance and common-mode level of the second stage of signal manipulation without degrading the performance of either stage.
Abstract: Various approaches of receiving signals in integrated circuitry include implementing a voltage-mode passive mixer for down-converting the frequency of the received signals, a baseband output buffer, and a transconductance amplifier coupled between the voltage-mode passive mixer and baseband output buffer for presenting a high-impedance load to the voltage-mode passive mixer and shielding the baseband output buffer from a high-frequency feedthrough.