Patents Assigned to Wavelight GmbH
  • Patent number: 9138348
    Abstract: An apparatus for operating a laser materials processing and measurement device with a controllable laser for generating a laser beam and beam control means for adjusting the focus zone of a controlled portion of the laser beam in three spatial directions comprises an interface for operating a bidirectional data transfer link with the laser and the beam control means, and user control means for inputting and displaying control commands or control command sequences and for monitoring and/or controlling operation and/or the operating state of the device. So that all the components of the apparatus may also be tested with regard to all functionalities, if the laser materials processing and measurement device is not operationally ready and/or not connected to the interface, according to the invention the apparatus comprises simulation means for simulating operation of the device and/or of the user control means.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 22, 2015
    Assignee: Wavelight Gmbh
    Inventor: Mathias Wölfel
  • Publication number: 20150202085
    Abstract: In certain embodiments, a device comprises a laser device and a control computer. The laser device directs a laser beam with laser energy through an outer portion of an eye to a target portion of the eye. The control computer receives an optical density measurement of the outer portion, determines the laser energy according to the optical density measurement, and instructs the laser device to direct the laser beam with the laser energy through the outer portion of the eye to the target portion of the eye.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 23, 2015
    Applicant: WAVELIGHT GMBH
    Inventors: Sissimos Lemonis, Stefan Wendl
  • Publication number: 20150202084
    Abstract: In certain embodiments, reducing opaque bubble layers (OBLs) comprises receiving information describing a tissue region of a tissue where laser pulses are applied to yield laser-induced optical breakdowns (LIOBs) in the tissue region. The LIOBs yield bubbles of gas. A concentration of the gas in the tissue region is estimated from the information. One or more laser parameters are adjusted in response to the concentration of the gas to satisfy a critical concentration rule.
    Type: Application
    Filed: August 28, 2012
    Publication date: July 23, 2015
    Applicant: WAVELIGHT GMBH
    Inventors: Silvia Schumacher, Michael Mrochen, Christian Wuellner, Christof Donitzky, Klaus Vogler
  • Patent number: 9072589
    Abstract: An arrangement for carrying out surgical laser treatments of the eye is adapted to emit pulsed treatment radiation with a wavelength of between about 190 nm and about 380 nm and a pulse duration in the femtosecond range. Such treatment radiation allows nonaggressive corneal or intraocular laser treatment of the eye, for example in order to make corneal cuts or deliberately ablate corneal tissue.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: July 7, 2015
    Assignee: Wavelight GmbH
    Inventors: Karsten Konig, Ronan Le Harzic, Christian Wullner, Christof Donitzky
  • Patent number: 9050173
    Abstract: The present invention relates to a method for generating a control program for ophthalmologic LASIK surgery, with which a pulsed laser system can be controlled for the photodisruptive cutting of a flap, having the following steps: obtaining empirical data, which relate to the effect in particular of flap shapes and ablation profiles on postoperative refractive results, obtaining measurement data relating to the eye to be treated, calculating an optimal cutting shape for the photodisruptive cutting of the flap by taking into account the said empirical data and the said measurement data, and generating the control program on the basis of the calculated cutting shape.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 9, 2015
    Assignee: WAVELIGHT GMBH
    Inventors: Michael Mrochen, Olaf Kittelmann, Christof Donitzky, Rafael Zatonski
  • Publication number: 20150141971
    Abstract: In certain embodiments, marking a lenticule includes controlling a focus of pulsed laser radiation having ultrashort pulses. A lenticule marking is created in a cornea of an eye with the pulsed laser radiation to mark the lenticule. The lenticule is then created in the cornea with the pulsed laser radiation.
    Type: Application
    Filed: June 7, 2012
    Publication date: May 21, 2015
    Applicant: Wavelight GMBH
    Inventors: Jörg Klenke, Katrin Skerl, Theo Seiler
  • Patent number: 9033506
    Abstract: There is provided an apparatus for recording a depth profile of a biological tissue, in particular a frontal eye section of a human eye, according to the principle of optical coherence tomography, comprising a light source adapted to generate a bundle of light rays, an interferometer arrangement having a beam splitter device adapted to spatially separate the bundle of light rays into a reference beam and a measurement beam directed toward the tissue, a reference beam deflection device adapted to deflect the reference beam, a beam superpositioning device adapted to spatially superimpose the deflected reference beam onto the measurement beam deflected by the tissue into a superpositioned beam, and a detector arrangement for detecting information in the superpositioned beam associated with the difference of the optical path length of the reference beam and the measurement beam.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 19, 2015
    Assignee: Wavelight GMBH
    Inventors: Christof Donitzky, Klaus Vogler, Christian Wuellner, Claudia Gorschboth, Michael Mrochen
  • Publication number: 20150131054
    Abstract: A process and an apparatus are proposed for determining optical aberrations of an eye with its optical system including the cornea and the lens. The process includes the reconstructing of wavefront aberrations of the eye as a deviation of the wavefront, determined by the optical system of the eye with a process of aberrometry, with respect to an ideal planar wavefront generated by an aberration-free eye model. A measured ocular length is employed for the aberration-free eye model.
    Type: Application
    Filed: July 10, 2012
    Publication date: May 14, 2015
    Applicant: Wavelight GMBH
    Inventors: Christian Wuellner, Christof Donitzky, Maik Kaemmerer
  • Publication number: 20150116725
    Abstract: A device for optical coherence tomography comprises a light generator, a dispersive medium, an optical coupler and a detector. The light generator is adapted to generate input pulses of coherent light, each input pulse having an input pulse width. The dispersive medium has an input that is optically coupled to the light generator and an output for output pulses. The dispersive medium is adapted to stretch the input pulse width to an output pulse width by chromatic dispersion. The optical coupler is adapted to couple the output pulses from the output into a reference arm and into a sample arm. The optical coupler is adapted to superimpose light returning from the reference arm and from the sample arm. The detector is adapted to detect an intensity of interference of the superimposed light with a temporal resolution of a fraction of the output pulse width.
    Type: Application
    Filed: April 20, 2012
    Publication date: April 30, 2015
    Applicant: WAVELIGHT GMBH
    Inventors: Sissimos Lemonis, Alexander Kempe, Mario Abraham, Peter Riedel
  • Publication number: 20150116661
    Abstract: A technique for optical coherence tomography is provided. As to a device aspect of the technique, an imaging device comprises a base defining a rotation axis, a scanning and focusing assembly mounted to the base for rotation about the rotation axis, and a drive unit for rotationally driving the scanning and focusing assembly about the rotation axis. The scanning and focusing assembly includes a focusing device for focusing a beam of imaging radiation to produce a focused beam of imaging radiation having a focus, a scanning member for scanning the beam of imaging radiation, and a controller coupled to the drive unit and the scanning member and configured to control the scanning member to cause movement of the focus along a predetermined trajectory with respect to the scanning and focusing assembly.
    Type: Application
    Filed: May 3, 2012
    Publication date: April 30, 2015
    Applicant: Wavelight GMBH
    Inventors: Ole Massow, Henning Wisweh, Tobias Jeglorz
  • Patent number: 9013685
    Abstract: A process for producing an interface unit and also a group of such interface units are specified. The interface unit exhibits a first reference surface for beaming in radiation, a second reference surface for emitting the radiation, and an axis extending in the direction from the first to the second reference surface. The production process comprises the steps of setting an optical path length of the interface unit between the first and second reference surfaces along the axis and the fixing of the set optical path length of the interface unit. The optical path length of the interface unit is set in such a way that radiation of a defined numerical aperture beamed in at the first reference surface exhibits a focus location that is predetermined with respect to the second reference surface in the direction of the axis. A precise and uniform focus location with respect to the second reference surface is obtained.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 21, 2015
    Assignee: Wavelight GmbH
    Inventors: Claudia Gorschboth, Jing Li, Klaus Vogler, Olaf Kittelmann, Thomas Deisinger, Gerhard Robl
  • Patent number: 9004688
    Abstract: An instrument is proposed for examining or machining a human eye, with an eye-tracker for acquiring eye movements and for outputting a signal that is representative of the acquired eye movements, the eye-tracker including an interferometric image-acquisition device that has been set up for time-resolved acquisition of sectional images of the eye and that operates on the basis of two-dimensional or three-dimensional optical coherence tomography, and also an evaluating module ascertaining the eye movements solely from the sectional images.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: April 14, 2015
    Assignee: Wavelight GmbH
    Inventors: Klaus Vogler, Mario Abraham
  • Publication number: 20150057644
    Abstract: In certain embodiments, a method for refractive correction includes controlling, by one or more laser components, a focus of pulsed laser radiation having ultrashort pulses. A posterior incision is created with the pulsed laser radiation to form a posterior side of a lenticule. An anterior incision is created with the pulsed laser radiation to form an anterior side of the lenticule. Application of a stabilization solution to the lenticule is facilitated to stabilize the lenticule.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 26, 2015
    Applicant: Wavelight GMBH
    Inventor: Katrin Skerl
  • Publication number: 20150042949
    Abstract: In a process for optical coherence tomography a plurality of first OCT slice images, in each first slice image representing a different slice of an object, are recorded. Subsequently a reference figure that is representative of the three-dimensional contour of at least one structural feature of the object in a given three-dimensional coordinate system is ascertained by feature recognition of the at least one structural feature in the first slice images. Then a plurality of second OCT slice images, each second slice image representing a different slice of the object, are recorded. At least a fraction of the second slice images are displaced in the coordinate system until each second slice image is in feature overlap with the reference figure. Lastly, a set of three-dimensional OCT image data is generated at least from the feature-overlapped second slice images.
    Type: Application
    Filed: December 28, 2011
    Publication date: February 12, 2015
    Applicant: WAVELIGHT GMBH
    Inventors: Tobias Jeglorz, Ole Massow, Henning Wisweh
  • Publication number: 20150036899
    Abstract: The present invention relates to a laser apparatus, system, and method for determining a depth of a focus point of a laser beam. An interface device is coupleable to the laser apparatus and has an applanation element comprising a front surface and a back surface. A laser beam having a predefined shape is focussed through the applanation element at a focus point. A superimposed image of a spurious reflection, which is reflected from the front surface of the applanation element, with a standard reflection, which is reflected from the back surface of the applanation element, is detected. The spurious reflection is then filtered out of the superimposed image. Based on the remaining standard reflection, the depth of the focus point of the laser beam can be determined.
    Type: Application
    Filed: December 29, 2011
    Publication date: February 5, 2015
    Applicant: WAVELIGHT GMBH
    Inventor: Berndt Warm
  • Patent number: 8941840
    Abstract: In certain embodiments, a device for optical coherence tomography (OCT) includes a signal detection device and a computer arrangement. The signal detection device is designed to detect an interference signal (G(?)) for an object to be imaged in an optical frequency range (?). The computer arrangement is designed to determine intermediate signals (G1(k), G2(k)) in a spatial frequency range (k) from the interference signal (G(?)), whereby each of the intermediate signals (G1(k), G2(k)) is dispersion-compensated for a different depth (z1, z2) of the object. A locally resolved image signal (FFT1, FFT2) is determined for each of the intermediate signals (G1(k), G2(k)) by applying a Fourier transformation to the particular intermediate signal (G1(k), G2(k)). A tomography signal (G(z)) is determined from the image signals (FFT1, FFT2).
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 27, 2015
    Assignee: WaveLight GmbH
    Inventors: Ole Massow, Henning Wisweh
  • Publication number: 20150002850
    Abstract: An optical coherence tomography device comprises a light generator, a dispersive medium, an optical coupler and a detector. The light generator is adapted to generate a series of input pulses of coherent light, each input pulse having an input pulse width. The dispersive medium has an input that is optically coupled to the light generator and an output for output pulses. The dispersive medium is adapted to stretch the input pulse width to an output pulse width of each of the output pulses by chromatic dispersion. The optical coupler is adapted to couple the output pulses into a reference arm and a sample arm. The optical coupler is further adapted to superimpose light returning from the reference arm and the sample arm. The detector is adapted to detect an intensity of interference of the superimposed light with a temporal resolution of a fraction of the output pulse width.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 1, 2015
    Applicant: WAVELIGHT GMBH
    Inventors: Klaus Vogler, Henning Wisweh
  • Patent number: 8915905
    Abstract: An apparatus for ophthalmic laser surgery comprises a source (28) for a pulsed femtosecond laser beam, a telescope (32) expanding the laser beam, a scanner (36) downstream of the telescope, for deflecting the laser beam in a plane perpendicular to the beam path, and also an f-theta objective (44) downstream of the scanner, for focusing the laser beam. In accordance with the invention, an entrance lens (52) of the telescope (32) takes the form of a controllable lens of variable refractive power. The entrance lens (52) is preferentially constituted by an electrically controllable liquid lens or liquid-crystal lens.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 23, 2014
    Assignee: WaveLight GmbH
    Inventors: Klaus Vogler, Claudia Gorschboth
  • Publication number: 20140362384
    Abstract: A spectroscopic instrument includes a first optical component for spatial spectral splitting of a polychromatic beam of light impinging onto the first optical component, an objective, which routes various spectral regions of the split beam of light onto differing spatial regions, and a sensor, situated downstream of the objective in the beam path of the beam of light, with a plurality of light-sensitive sensor elements. The sensor elements are arranged in the beam path of the split beam of light in such a manner that each sensor element registers the intensity of a spectral sector of the beam of light and the medians of the spectral sectors are situated equidistant from one another in the k-space, where k denotes the wavenumber.
    Type: Application
    Filed: December 28, 2011
    Publication date: December 11, 2014
    Applicant: WAVELIGHT GMBH
    Inventors: Claudia Gorschboth, Tobias Jeglorz, Ole Massow, Henning Wisweh, Klaus Vogler
  • Publication number: 20140364744
    Abstract: An apparatus and a method for cutting or ablating corneal tissue of an eye provide for detection of electromagnetic radiation exiting the eye. A detector is provided and coupled to a computer controlling the cutting or ablating laser radiation so that a two- or three-dimensional image of radiation exiting the eye can be generated.
    Type: Application
    Filed: December 20, 2012
    Publication date: December 11, 2014
    Applicant: WAVELIGHT GMBH
    Inventor: Armin Wellhoefer