Patents Assigned to Waymo LLC
  • Patent number: 11906813
    Abstract: The present disclosure relates to optical devices and systems, specifically those related to light detection and ranging (LIDAR) systems. An example device includes a shaft defining a rotational axis. The shaft includes a first material having a first coefficient of thermal expansion. The device also includes a rotatable mirror disposed about the shaft. The rotatable mirror includes a multi-sided structure having an exterior surface and an interior surface. The multi-sided structure includes a second material having a second coefficient of thermal expansion. The second coefficient of thermal expansion is different from the first coefficient of thermal expansion. The multi-sided structure also includes a plurality of reflective surfaces disposed on the exterior surface of the multi-sided structure. The multi-sided structure yet further includes one or more support members coupled to the interior surface and the shaft.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: February 20, 2024
    Assignee: Waymo LLC
    Inventors: Blaise Gassend, Ryan Davis, David Duff
  • Patent number: 11904779
    Abstract: The technology provides an interior camera sensing system for self-driving vehicles. The sensor system includes image sensors and infrared illuminators to see the vehicle's cabin and storage areas in all ambient lighting conditions. The system can monitor the vehicle for safety purposes, to detect the cleanliness of the cabin and storage areas, as well as to detect whether packages or other objects have been inadvertently left in the vehicle. The cameras are arranged to focus on selected regions in the vehicle cabin and the system carries out certain actions in response to information evaluated for those regions. The interior space is divided into multiple zones assigned different coverage priorities. Regardless of elude size or configuration, certain actions are performed according to various ride checklists and the imagery detected by the interior cameras. The checklists include pre-ride, mid-ride, and post-ride checklists.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: February 20, 2024
    Assignee: Waymo LLC
    Inventors: Kimberly Toth, Giulia Guidi, Choon Ping Chng
  • Patent number: 11909263
    Abstract: One example device includes a rotor platform that rotates about an axis of rotation. The device also includes a rotor coil comprising a first plurality of conductive loops disposed along a planar mounting surface of the rotor platform. The device also includes a stator platform and a stator coil comprising a second plurality of conductive loops disposed along a planar mounting surface of the stator platform. The rotor coil and the stator coil are coaxially arranged about the axis of rotation. The stator coil remains within a first predetermined distance to the rotor coil in response to rotation of the rotor platform. The device also includes a magnetic core extending along the axis of rotation and through the stator coil. The magnetic core remains within a second predetermined distance to the stator coil in response to rotation of the rotor platform.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: February 20, 2024
    Assignee: Waymo LLC
    Inventor: Paul Karplus
  • Patent number: 11899468
    Abstract: A system includes an array of photodiode sensors positioned on an autonomous vehicle. Each photodiode sensor in the array of photodiode sensors is oriented in a different direction and configured to generate electrical current signals in response to detecting a flashing light in a surrounding environment of the autonomous vehicle. The system also includes a processor coupled to the array of photodiode sensors. The processor is configured to determine a location of a source of the flashing light relative to the autonomous vehicle based on electrical current signals from at least one photodiode sensor in the array of photodiode sensors. The processor is also configured to generate a command to maneuver the autonomous vehicle based on the location of the source relative to the autonomous vehicle.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: Evan Cull, Nirav Dharia
  • Patent number: 11900693
    Abstract: Methods and devices for using a relationship between activities of different traffic signals in a network to improve traffic signal state estimation are disclosed. An example method includes determining that a vehicle is approaching an upcoming traffic signal. The method may further include determining a state of one or more traffic signals other than the upcoming traffic signal. Additionally, the method may also include determining an estimate of a state of the upcoming traffic signal based on a relationship between the state of the one or more traffic signals other than the upcoming traffic signal and the state of the upcoming traffic signal.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: David I. Ferguson, Bradley Templeton
  • Patent number: 11902648
    Abstract: An apparatus includes a lens assembly that includes at least one lens that defines an optical axis, a lens holder coupled to the lens assembly, a substrate, an image sensor disposed on the substrate, and an actuator coupled between the lens holder and the substrate and configured to adjust a position of the substrate relative to the lens assembly to reposition the image sensor along the optical axis. The apparatus also includes a position sensor that includes a magnet and a magnetic field sensor. The position sensor is coupled to the substrate and the lens holder. The magnetic field sensor is configured to generate magnetic field data indicating a position of the substrate relative to the lens holder. The apparatus additionally includes circuitry configured to control the actuator based on the magnetic field data to place the image sensor within a depth of focus of the lens assembly.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventor: Shashank Sharma
  • Patent number: 11900224
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating training data for training a machine learning model to perform trajectory prediction. One of the methods includes: obtaining a training input, the training input including (i) data characterizing an agent in an environment as of a first time and (ii) data characterizing a candidate trajectory of the agent in the environment for a first time period that is after the first time. A long-term label for the candidate trajectory that indicates whether the agent actually followed the candidate trajectory for the first time period is determined. A short-term label for the candidate trajectory that indicates whether the agent intended to follow the candidate trajectory is determined. A ground-truth probability for the candidate trajectory is determined. The training input is associated with the ground-truth probability for the candidate trajectory in the training data.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: Khaled Refaat, Stephane Ross
  • Patent number: 11903102
    Abstract: The technology relates to keeping sensors of a perception system optically clear and free from condensation. A transparent film, such as Indium Tin Oxide (ITO), acts as a moisture sensor that covers the optical area of interest. When a measured value of the moisture sensor meets a certain threshold that indicates the presence of condensate, power is applied to the sensor, turning it into a heater. When the measured value no longer meets the threshold, power is removed and heating ceases. The ITO layer may be lithographically applied to a glass sensor cover or other window, with interleaved sections of material that are spaced closely to detect a minimum amount of condensate. This arrangement enables the system to be employed in sensor assemblies at various locations along a self-driving vehicle, and can be used with different types of sensors such as lidar sensors, cameras and other imaging devices.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: Noah Lassar, Yiwei Wang
  • Patent number: 11900697
    Abstract: The technology relates to approaches for determining appropriate stopping locations at intersections for vehicles operating in a self-driving mode. While many intersections have stop lines painted on the roadway, many others have no such lines. Even if a stop line is present, the physical location may not match what is in store map data, which may be out of date due to construction or line repainting. Aspects of the technology employ a neural network that utilizes input training data and detected sensor data to perform classification, localization and uncertain estimation processes. Based on these processes, the system is able to evaluate distribution information for possible stop locations. The vehicle uses such information to determine an optimal stop point, which may or may not correspond to a stop line in the map data. This information is also used to update the existing map data, which can be shared with other vehicles.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: Romain Thibaux, David Harrison Silver, Congrui Hetang
  • Patent number: 11899466
    Abstract: The technology relates to autonomous vehicles for transporting cargo and/or people between locations. Distributed sensor arrangements may not be suitable for vehicles such as large trucks, busses or construction vehicles. Side view mirror assemblies are provided that include a sensor suite of different types of sensors, including LIDAR, radar, cameras, etc. Each side assembly is rigidly secured to the vehicle by a mounting element. The sensors within the assembly may be aligned or arranged relative to a common axis or physical point of the housing. This enables self-referenced calibration of all sensors in the housing. Vehicle-level calibration can also be performed between the sensors on the left and right sides of the vehicle. Each side view mirror assembly may include a conduit that provides one or more of power, data and cooling to the sensors in the housing.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: William Grossman, Benjamin Pitzer
  • Patent number: 11892307
    Abstract: Aspects of the disclosure provide for identifying problematic areas within a service area for an autonomous vehicle transportation service. For instance, a starting location within the service area corresponding to a potential pickup location for passengers or cargo for the service may be identified. A destination within the service area may be identified. A simulation may be run in order to determine a route for a simulated vehicle to travel between the starting location and the destination. That the route includes a particular type of maneuver may be determined. A new simulation without allowing the simulated vehicle to complete the particular type of maneuver may be run. Whether the simulated vehicle reaches the destination in the new simulation may be determined. Based on the determination of whether the simulated vehicle reaches the destination in the new simulation, the starting location and destination location may be flagged as potentially problematic areas.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventor: Austin Abrams
  • Patent number: 11892842
    Abstract: Example implementations relate to vehicle occupancy confirmation. An example implementation involves receiving, at a computing system from a camera positioned inside a vehicle, an image representing an occupancy within the vehicle. The implementation further involves, responsive to receiving the image, displaying the image on a display interface, and receiving an operator input confirming the occupancy meets a desired occupancy. The implementation additionally includes transmitting an occupancy confirmation from the computing system to the vehicle. In some instances, in response to receiving the occupancy confirmation, the vehicle executes an autonomous driving operation.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventor: Joshua Herbach
  • Patent number: 11892777
    Abstract: The present application relates to contact immersion lithography exposure units and methods of their use. An example contact exposure unit includes a container configured to contain a fluid material and a substrate disposed within the container. The substrate has a first surface and a second surface, and the substrate includes a photoresist material on at least the first surface. The contact exposure unit includes a photomask disposed within the container. The photomask is optically coupled to the photoresist material by way of a gap comprising the fluid material. The contact exposure unit also includes an inflatable balloon configured to be controllably inflated so as to apply a desired force to the second surface of the substrate to controllably adjust the gap between the photomask and the photoresist material.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: Hongqin Shi, Yeh-Jiun Tung, James Dunphy, Cesar Gensoli
  • Patent number: 11892572
    Abstract: The present disclosure relates to multi-channel optical transmitter modules, lidar systems, and methods that involve micromirror devices. An example optical transmitter module includes at least one light-emitter device and a plurality of micromirror devices optically-coupled to the at least one light-emitter device. The at least one light-emitter device is configured to emit respective light beams toward an environment via the micromirror devices. The micromirror devices are configured to deflect the light beams. The optical transmitter module also includes a controller having at least one processor and a memory. The controller is configured to carry out operations. The operations include receiving information indicative of a retroreflector object in the environment.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Schleuning, Ralph Shepard
  • Patent number: 11892832
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium that generates lane path descriptors for use by autonomous vehicles. One of the methods includes receiving data that defines valid lane paths in a scene in an environment. Each valid lane path represents a path through the scene that can be traversed by a vehicle. User interface presentation data can be provided to a user device. The user interface can contain: (i) a first display area that displays a first visual representation of the sensor measurement; and (ii) a second display area that displays a second visual representation of the set of valid lane paths. User input modifying the second visual representation of the set of valid lane paths can be received; and in response to receiving the user input, the set of valid lane paths of the scene in the environment can be modified.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: Jeffrey Sham, Homero Menchaca Hernández, Jeffrey Carlson, Yulai Shen, Ningshan Zhang
  • Patent number: 11893524
    Abstract: Aspects of the technology relate to providing service area maps for an autonomous vehicle transportation service having a fleet of vehicles. For instance, each vehicle of the fleet is associated with a polygon corresponding to a service area for that vehicle. A first location may be received from a client computing device, and a set of vehicles of the fleet of vehicles that are currently available to provide transportation services may be identified based on the first location. The polygons associated with each of the set of vehicles may be used to determine a first polygon having a geographic area. A first portion of map information corresponding to the geographic area of the first polygon may be identified, and the first portion may be provided to the client computing device for display to a user such that the portion represents a currently available service area for the user.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: David Margines, Tacettin Guney, Saksiri Tanphaichitr, Jeffrey Min, Laurens Feenstra, Peter Pawlowski, Dirk Haehnel
  • Patent number: 11892567
    Abstract: Systems and methods are disclosed to identify a presence of a volumetric medium in an environment associated with a LIDAR system. In some implementations, the LIDAR system may emit a light pulse into the environment, receive a return light pulse corresponding to reflection of the emitted light pulse by a surface in the environment, and determine a pulse width of the received light pulse. The LIDAR system may compare the determined pulse width with a reference pulse width, and determine an amount of pulse elongation of the received light pulse. The LIDAR system may classify the surface as either an object to be avoided by a vehicle or as air particulates associated with the volumetric medium based, at least in part, on the determined amount of pulse elongation.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: Luke Wachter, Pierre-Yves Droz, Clayton Kunz
  • Patent number: 11894595
    Abstract: Example embodiments relate to substrate integrated waveguide (SIW) transitions. An example SIW may include a dielectric substrate having a top surface and a bottom surface and a first metallic layer portion coupled to the top surface of the dielectric substrate that includes a single-ended termination, an impedance transformer, and a metallic rectangular patch located within an open portion in the first metallic layer portion such that the open portion forms a non-conductive loop around the metallic rectangular patch. The SIW also includes a second metallic layer portion coupled to the bottom surface of the dielectric substrate and metallic via-holes electrically coupling the first metallic layer to the second metallic layer. The SIW may be implemented in a radar unit to couple antennas to a printed circuit board (PCB). In some examples, the SIW may be implemented with only a non-conductive opening that lacks the metallic rectangular patch.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: Edwin Lim, Tegan Argo, Marvin Weinstein
  • Patent number: 11885639
    Abstract: Aspects of the disclosure relate to generating scouting objectives in order to update map information used to control a fleet of vehicles in an autonomous driving mode. For instance, a notification from a vehicle of the fleet identifying a feature and a location of the feature may be received. A first bound for a scouting area may be identified based on the location of the feature. A second bound for the scouting area may be identified based on a lane closest to the feature. A scouting objective may be generated for the feature based on the first bound and the second bound.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 30, 2024
    Assignee: Waymo LLC
    Inventors: Katharine Patterson, Joshua Herbach, David Silver, David Margines
  • Patent number: D1014398
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: February 13, 2024
    Assignee: Waymo LLC
    Inventors: YooJung Ahn, Toshihiro Fujimura, Jared Gross, Solomon Lyman