Abstract: A method for producing an implant blank (100), in particular a dental implant blank from a starting body, said implant blank (100) comprising at least one first area, which is a surface area (102), and a second area, which is a core area (101), wherein the surface area (102) has at least one bioactive surface material (502) and extends from at least one first surface (103) in the direction of the core area (101), and the core area (101) has at least one carrier material that can be subjected to mechanical load. The starting body has a porosity for controlling a targeted distribution of the bioactive surface material (502) within the starting body and is loaded with a solution (500) of the bioactive surface material (502) in a first step, which is a loading step.
Abstract: A method for the production of a polychromatic and/or spatially polychromatic or a monochrome colored ceramic body, in particular a dentine ceramic blank, which is dyed in this way, wherein in order to control a targeted distribution of color pigments (101, 102) within a porous ceramic (100), in a first step, which is a loading step (3c), the ceramic (100) is loaded with a color pigment solution (104). In a second step, which is a distribution control step (4d), the distribution of the color pigments (101, 102) within the ceramic (100) is controlled by controlling one or more environmental parameters (106) in an environment (108) and/or the pressure and/or temperature.
Abstract: A process for producing a ceramic body (100), in particular a dental ceramic blank, having selectively adjustable degrees of expression of one or more different physical properties, wherein the ceramic body (100) has a porosity to enable the control of a selective distribution of one or more chemical substances (101, 102) that are suitable for influencing the physical properties of the ceramic body (100), and in a first step, which is a loading step, the ceramic body is loaded with one or more solutions (104) of the one or more chemical substances (101, 102). In a second step, which is a distribution step, the distribution of the one or more chemical substances (101, 102) within the porous ceramic body (100) is controlled, wherein a progression and/or a spatial progression of the degree of expression of the one or more physical properties can be produced.
Abstract: The invention relates to a method for producing tooth parts from dental-grade metal powder, wherein existing CAD/CAM milling machines can be used. The essential process steps consist of: a) preparing a slurry from dental-grade metal powder, b) casting the slurry into a mold, c) drawing out (drying) suspension liquid (water) until a mechanically stable blank is obtained, d) milling the blank into the desired shape, e) oxygen-free sintering of the tooth parts milled from the blank. Because the blank is still present as a green body, milling does not place great demands on the milling machine in terms of mechanical stability and dust development. As a result, the operating speed and the service lives of customary milling machines are substantially increased.
Abstract: The invention relates to a method for producing tooth parts from dental-grade metal powder, wherein existing CAD/CAM milling machines can be used. The essential process steps consist of: a) preparing a slurry from dental-grade metal powder, b) casting the slurry into a mold, c) drawing out (drying) suspension liquid (water) until a mechanically stable blank is obtained, d) milling the blank into the desired shape, e) oxygen-free sintering of the tooth parts milled from the blank. Because the blank is still present as a green body, milling does not place great demands on the milling machine in terms of mechanical stability and dust development. As a result, the operating speed and the service lives of customary milling machines are substantially increased.