Abstract: Methods and systems for normalizing flood warnings and potential flood levels across multiple river gauges by converting localized flood stage levels to a datum-based normalized value are disclosed. The normalized flood levels can then be used to plot flood levels from multiple river gauges on an inundation map. Methods and systems are also disclosed for creating animated inundation maps that illustrate flood levels geographically, and may include an indication of the certainty that flooding will reach one or more of the indicated flood levels through the use of multiple colors, shades, dithering, or the like.
Abstract: The invention provides a system and method for activating one or more warning devices, such as weather warning sirens, environmental warning devices, flash flood gates, and the like, from a remote or central location. Warning devices situated across geographically dispersed areas can be remotely controlled from a central location, such as a weather center, on the basis of detected and predicted weather patterns and other environmentally hazardous events. One or more warning devices can be quickly and easily activated through a computer-implemented user interface that allows a user to select a group of warning devices that are in the path of an approaching hazardous event. Each warning device is activated through a communication line that transmits an activation code to each device. Each device provides confirmation that it has been activated, and the resulting activation is indicated on a computer screen.
Abstract: The invention provides a system and method for predicting areas where lightning strikes are likely to occur by evaluating radar and temperature data. Radar volume data is analyzed to locate cloud tops that extend above a height corresponding to a temperature line of about −10° C. Areas where cloud tops extend above the height of the −10° C. line and that have a radar composite reflectivity greater than 30 dBZ are designated as probable lightning threat areas. Radar movement is tracked across at least two time periods, and a correlation algorithm predicts the future location of lightning threat areas at predetermined time periods (e.g., 10 minutes, 20 minutes, and 30 minutes) based on predicted radar values. A computer display shows the predicted location of the lightning threat areas for the future time periods. In one variation, selected structures or areas (e.g.
Abstract: The invention provides a system and method for activating one or more warning devices, such as tornado sirens, from a remote or central location. Warning devices situated across geographically dispersed areas can be remotely controlled from a central location, such as a weather center, on the basis of detected and predicted weather patterns. One or more warming devices call be quickly and easily activated through a computer-implemented user interface that allows a user to select a group of warning devices that are in the path of an approaching tornado. Each warning device is activated through a communication line that transmits an activation code to each device. Each device provides confirmation that it has been activated, and the resulting activation is indicated on a computer screen.