Abstract: A marine seismic survey using one or more moving marine seismic vibrators, where the vibrator sweeping function is based on smearing error criteria and is a downward-sweeping non-criteria linear sweep function. The acquired seismic data can either be used as is without desmearing or desmeared easily.
Abstract: A technique includes distributing particle motion sensors along the length of a seismic streamer. Each particle motion sensor is eccentrically disposed at an associated angle about an axis of the seismic streamer with respect to a reference line that is common to the associated angles. The sensors are mounted to suppress torque noise in measurements that are acquired by the particle motion sensors. This mounting includes substantially varying the associated angles.
Type:
Application
Filed:
August 26, 2013
Publication date:
December 26, 2013
Applicant:
WESTERNGECO L.L.C.
Inventors:
AHMET KEMAL OZDEMIR, OEYVIND TEIGEN, LARS BORGEN
Abstract: To perform surveying of a subterranean structure, an electromagnetic (EM) source array has a plurality of electrodes. Different subsets of the electrodes are dynamically activated to provide corresponding EM radiation patterns to survey the subterranean structure.
Abstract: A technique includes receiving first data belonging to a first type of remote sensing data for a region of interest and receiving second data belonging to a different second type of remote sensing data for the region of interest. The technique includes determining at least one geomorphological feature of the region of interest based at least in part on the first and second data.
Abstract: Marine seismic survey using one or more marine seismic vibrators, where the vibrator sweep function is based on a quality requirement, which may be a final image quality requirement or an environmental requirement. The sweep function may be nonlinear and the energy spectrum may not match the energy spectrum of an airgun.
Abstract: A source wavefield is computed from encoded source data calculated by performing encoding of source wavelets with noise. A receiver wavefield is computed from encoded receiver data calculated by encoding of measured receiver data with the noise. An output representing a target structure is determined based on the source wavefield and the receiver wavefield.
Type:
Application
Filed:
June 15, 2012
Publication date:
December 19, 2013
Applicant:
WESTERNGECO L.L.C.
Inventors:
CAN EVREN YARMAN, PAUL N. CHILDS, EUGENE WILLIAM STARR
Abstract: Methods to attenuating strong marine seismic noises using singular value decomposition, determining noisiest traces and estimating noise components only from these traces, iteratively estimating the noise and protecting signal behind the noise. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract: A method and apparatus for predicting a plurality of surface multiples for a plurality of traces in a record of seismic data. In one embodiment, the method includes providing a plurality of target traces at a nominal offset and a nominal azimuth; selecting a plurality of pairs of input traces, wherein the midpoints of the input traces in each pair are separated by half the nominal offset and the azimuth of a line connecting the midpoints of the input traces in each pair is equal to the nominal azimuth; convolving the selected pairs of input traces to generate a plurality of convolutions; and applying a three dimensional operator to the convolutions.
Abstract: To update a subterranean model, an initial subterranean model is provided, and based on the initial subterranean model, changes to subterranean parameters are predicted using a reservoir simulator. Electromagnetic data representing characteristics of a subterranean structure is computed according to the predicted changes to the subterranean parameters, and the initial subterranean model is modified based on comparing the computed electromagnetic data with observed electromagnetic data.
Abstract: A method and apparatus for a method for generating an estimated value of absorption parameter Q(t). In one embodiment, the method includes receiving an input seismic trace, applying a time variant Fourier transform to the input seismic trace to generate a time variant amplitude spectrum of the input seismic trace, dividing the natural logarithm of the time variant amplitude spectrum by ??f, and performing a power series approximation to the result with an index starting from one to generate an estimated value of R(t). R(t) is a ratio between traveltime t and the absorption parameter Q(t). The method further includes dividing t by R(t) to generate the estimated value of the absorption parameter Q(t).
Abstract: An automatic and robust method to attenuate seismic interference noises in marine seismic survey using multi-dimensional filters in Tau-P domain to identify and isolate seismic interference noises as anomalies.
Abstract: A method of obtaining information about the positions of sources in a marine seismic source array, comprises: determining respective notional signatures for m selected seismic sources, where m<n, where n is the number of sources of the array actuated to generate an output; and obtaining information about the travel between one of the m selected seismic sources and one of the n?m unselected seismic sources from the determined notional signatures. The m seismic sources are selected as sources whose positions, relative to one another, are expected to be close to their nominal positions. The effect of the n?m unselected seismic sources is ignored in the calculation of the nominal signatures for the m sources, and this gives rise to anomalies in the nominal signatures for the m sources. The determined travel time may be converted to a distance, so that information about the positions of the n?m unselected seismic sources may be obtained from the anomalies.
Abstract: The method presented accounts for three-dimensional effects when deghosting marine seismic data. The method relies on having second-order spatial derivatives in the cross-line direction available. The second-order cross-line derivative can be estimated directly or through indirect measurements of other wavefield quantities and by using wave-equation techniques to compute the desired term. The method preferably employs either a multicomponent streamer towed in the vicinity of the sea surface, a twin-streamer configuration near the sea-surface, or a configuration of three streamers that are separated either vertically or horizontally to estimate the second-order vertical derivative of pressure.
Abstract: A multiple axis sensor assembly includes an enclosure and encapsulated microelectromechanical system (MEMS) sensors. The encapsulated sensors are disposed inside the enclosure and are mounted in different orientations, which correspond to different axes of the sensor assembly. A controller of the sensor assembly is disposed in the enclosure and electrically coupled to the MEMS sensors.
Type:
Application
Filed:
May 23, 2012
Publication date:
November 28, 2013
Applicant:
WESTERNGECO L.L.C.
Inventors:
Hans Paulson, Vidar A. Husom, Nicolas Goujon
Abstract: A technique includes receiving a pressure measurement and a particle motion measurement from at least towed seismic sensor. The pressure measurement contains signal and noise. The technique includes estimating the signal in the pressure measurement and based at least on the estimated signal in the pressure measurement, estimating a noise in the pressure measurement. Noise in the particle motion measurement is predicted based on at least the estimated noise in the pressure measurement, and the particle motion measurement is processed to remove noise based on at least the predicted noise.
Abstract: An apparatus includes a streamer having one or more sensor holders for retaining seismic sensors therein. The sensor holders have a reduced cross-sectional area to increase gel continuity and coupling through the streamer.
Abstract: A technique includes determining a first difference between a time that a first network element of a seismic acquisition network receives a first frame pulse from a second network element of the seismic acquisition network and a time that the first network element transmits a second frame pulse to the second network element. The technique includes determining a second difference between a time that the second network element receives the second frame pulse and a time that the second network element transmits the first frame pulse. The technique includes determining a transmission delay between the first and second network elements based on the first and second time differences.
Abstract: A method of processing seismic data including measurement data and their gradients to obtain gradients of move-out corrected data, comprising deriving gradients of the measurement data, deriving a first term comprising applying a move-out correction function to the measurement data; deriving a second term by applying the move-out correction function to the gradients and deriving gradients of move-out corrected data by adding the first term and the second term. The gradients of move-out corrected data are used to process physical properties of the earth's interior. The method may be used prior to any data processing algorithm which uses measurement gradient data in which move-out correction is applied prior to the algorithm, either because the algorithm makes a zero offset assumption or because it is beneficial for the algorithm to operate on move-out corrected data to reduce aliasing.
Abstract: A method to correct errors in a conversion from time gather to angle gather using slant stacks wherein the slant stacking is performed along a direction that is normal to a dip or along three orthogonal directions. The slant stacking is performed in various domains.
Type:
Grant
Filed:
April 20, 2010
Date of Patent:
November 19, 2013
Assignee:
WesternGeco L.L.C.
Inventors:
David Nichols, Madhav Vyas, Everett C. Mobley
Abstract: A technique for acquiring wide azimuth seismic data using simultaneous shooting is presented in which a plurality of seismic sources are positioned to achieve a desired crossline sampling as a function of the number of passes. This is accomplished by “interleaving” sources as deployed in the spread, as positioned in multiple passes, or some combination of these things, to achieve an effective shotline interval during acquisition or an effective crossline sampling less than their crossline source separation.