Patents Assigned to Wildcat Discovery Technologies, Inc.
  • Patent number: 12347857
    Abstract: A disordered rocksalt (DRS) having improved characteristic has a cation comprised of lithium and one other metal and an anion comprised of oxygen and fluorine, and one or more of phosphorous, sulfur, and nitrogen. The substitution of one or more of P, S, and N on the oxygen anion site may realize improved cycle life of the battery and/or may be useful to make safer batteries.
    Type: Grant
    Filed: June 1, 2023
    Date of Patent: July 1, 2025
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Han Wang, Bin Li
  • Patent number: 12166202
    Abstract: A cathode includes a disordered rocksalt phase material and a coating layer disposed on a surface of the disordered rocksalt phase material. The coating layer may include one or more of an oxide, a phosphate, a phosphide, or a fluoride.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: December 10, 2024
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li, Sun-Ho Kang, Yunguang Zhu, Han Wang
  • Patent number: 12126010
    Abstract: A method for forming a cathode includes milling a suspension of precursors via a micromedia mill to form a mixture of primary particles in the suspension. The precursors include one or more metal compounds. The method includes spray drying the suspension after the milling to form secondary particles. The secondary particles are agglomerations of the primary particles. The method also includes annealing the secondary particles to form a disordered rocksalt powder.
    Type: Grant
    Filed: November 29, 2023
    Date of Patent: October 22, 2024
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li
  • Patent number: 12119485
    Abstract: A cathode includes a disordered rocksalt phase material and a coating layer disposed on a surface of the disordered rocksalt phase material. The coating layer may include one or more of an oxide, a phosphate, a phosphide, or a fluoride.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: October 15, 2024
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li, Sun-Ho Kang, Yunguang Zhu, Han Wang
  • Patent number: 11993710
    Abstract: A composite solid state electrolyte comprises a polymer electrolyte material, a ceramic ion conductor, and a functionalized coupling agent selected to be compatible with the ceramic ion conductor and the bulk polymer compound. The polymer electrolyte material comprises a bulk polymer compound and a lithium salt. The functionalized coupling agent has a backbone that is structurally similar to the bulk polymer compound.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: May 28, 2024
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Kyler Carroll, Deidre Strand, Gang Cheng, Cameron Peebles, Ben Lancia, Bin Li, Alex Freigang
  • Patent number: 11870056
    Abstract: A method for forming a cathode includes milling a suspension of precursors via a micromedia mill to form a mixture of primary particles in the suspension. The precursors include one or more metal compounds. The method includes spray drying the suspension after the milling to form secondary particles. The secondary particles are agglomerations of the primary particles. The method also includes annealing the secondary particles to form a disordered rocksalt powder.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: January 9, 2024
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li
  • Patent number: 11322778
    Abstract: Described herein are additives for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high capacity retention during battery cycling at high temperatures. In some embodiments, a high voltage electrolyte includes a base electrolyte and one or more vinylsilane or fluorosilane additives, which impart these desirable performance characteristics.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 3, 2022
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Jinhua Huang, Ye Zhu
  • Patent number: 11258098
    Abstract: Described herein are additives for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high capacity retention during battery cycling at high temperatures. In some embodiments, a high voltage electrolyte includes a base electrolyte and one or more polymer additives, which impart these desirable performance characteristics. The polymer additives can be homopolymers or copolymers.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 22, 2022
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Jinhua Huang, Ye Zhu
  • Patent number: 11251467
    Abstract: Described herein are additives for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high capacity retention during battery cycling at high temperatures. In some embodiments, a high temperature electrolyte includes a base electrolyte and one or more polymer additives, which impart these desirable performance characteristics.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 15, 2022
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Jinhua Huang, Ye Zhu
  • Patent number: 11158854
    Abstract: An electrode includes a material represented by Li1-xMxCoO2-d where 0<x?0.2 and 0?d?0.2. The variable M includes a metal selected from the group consisting of transition metals, Group I elements, and Group II elements.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: October 26, 2021
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li
  • Patent number: 11133531
    Abstract: Electrolyte formulations including a high salt concentration. The electrolyte formulation includes an organic solvent and a lithium salt, wherein the lithium salt is mixed with the organic solvent at a concentration of at least 20 Mole %, or at least 40 Mole %, or at least 50 Mole %. The organic solvent includes N-methyl-2-pyrrolidone, butylene carbonate, butyl propionate, pentyl acetate, ?-caprolactone, propylene glycol sulfite, ethyl methyl sulfone, butyl sulfoxide or combinations thereof. The lithium salt includes lithium bis(trifluoromethane sulfonyl) imide, lithium tetrafluoroborate, or lithium hexafluorophosphate.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: September 28, 2021
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Bin Li, Marissa Caldwell, Prabhakar Tamirisa
  • Patent number: 11133530
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: September 28, 2021
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Jen-Hsien Yang
  • Patent number: 10978738
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 13, 2021
    Assignees: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Patent number: 10777845
    Abstract: A solid-state electrolyte including an ion-conducting inorganic material represented by the formula Li1+yZr2?xMex(PO4)3 where 2>x>0, 0.2>y>?0.2, and Me is at least one element from Group 14, Group 6, Group 5, or combinations thereof.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 15, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Cory O'Neill, Bin Li, Alex Freigang
  • Patent number: 10707521
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 7, 2020
    Assignees: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Patent number: 10651470
    Abstract: An electrode formed from a material represented by Li1-xMxCo1-yM?yO2-d where 0<x?0.2, 0?y<1, and 0<d?0.2. M and M? each independently comprises a metal selected from the group consisting of transition metals, Group I elements, and Group II elements.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 12, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Tanghong Yi, Bin Li
  • Patent number: 10651504
    Abstract: Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 12, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Deidre Strand, Ye Zhu, Marissa Caldwell
  • Patent number: 10587005
    Abstract: A battery having an anode, a soft-solid electrolyte, and a cathode. The soft-solid electrolyte includes a polymer soft-solid material formed from polymer combined with a solvent such as butylene carbonate, butyl sulfoxide, n-methyl-2-pyrrolidone, or ?-caprolactone.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: March 10, 2020
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Bin Li, Marissa Caldwell, Prabhakar Tamirisa, Hui Ye
  • Patent number: 10490854
    Abstract: A battery including an anode, a cathode, a separator, and a liquid electrolyte including a lithium salt, a non-aqueous solvent, and an additive compound including a functionalized matrix having a polymer or copolymer or silica. The cathode material can be an NMC or LCO material. The electrode formed from the cathode or anode material can include a matrix additive. The matrix additive can be adhered to the separator or other inert component of the battery.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 26, 2019
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Ye Zhu, Gang Cheng, Deidre Strand, Bin Li, Tanghong Yi
  • Patent number: 10461360
    Abstract: An electrode formulation including a polymer, which can be ion-conducting or non-conducting; an ion-conducting inorganic material; a lithium salt; and optionally an additive salt.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 29, 2019
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Cory O'Neill, Bin Li, Alex Freigang, Deidre Strand