Patents Assigned to William F. McLaughlin
  • Patent number: 5783085
    Abstract: A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore sized selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, in contact with the membrane and filtrate passes through the membrane is replenished with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: July 21, 1998
    Assignee: Estate of William F. McLaughlin
    Inventor: Halbert Fischel
  • Patent number: 5464534
    Abstract: A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore sized selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: November 7, 1995
    Assignee: William F. McLaughlin
    Inventor: Halbert Fischel
  • Patent number: 5376263
    Abstract: A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore sized selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
    Type: Grant
    Filed: November 2, 1993
    Date of Patent: December 27, 1994
    Assignee: William F. McLaughlin
    Inventor: Halbert Fischel
  • Patent number: 5194145
    Abstract: A system for filtration of matter from a liquid suspension through a membrane uses a rotor within a concentric shell rotating with a surface velocity which, together with the rotor-shell gap and suspension viscosity, establishes vigorous vortex cells about the rotor. At least one of the rotor and shell surfaces include a filter membrane. Tangential velocity components at the membrane surface constantly sweep the membrane surface to limit cell deposition tendencies while constantly replenishing the medium to be filtered. The vortex cells are established along the length of the membrane despite the constant extraction of filtrate and the resultant change in physical characteristics of the suspension.
    Type: Grant
    Filed: July 13, 1987
    Date of Patent: March 16, 1993
    Assignee: William F. McLaughlin
    Inventor: Donald W. Schoendorfer
  • Patent number: 5053127
    Abstract: A system for continuously esparating lighter and intermediate density matter, such as plasma rich in platelets from whole blood moves blood through a diverging centrifugation gap between inner and outer walls of a rotor rotating about a central axis within an outer housing. The centrifugation action creates layered flow along an intermediate section. However by crating trailing wakes in the gap between the rotor and housing, localized remixing patterns tending to move in the opposite direction are induced in the layered matter. Platelet rich plasma may then be extracted through adjacent platelet concentrate ports on the inner wall of the rotor. An interior passageway system passes the platelet rich plasma to a platelet concentrate reservoir. Recirculation of blood in the rotor-housing gap between the output and input, and pumping action provided by the diverging centrifugation gap, aid in enhancing throughput and concentration levels.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: October 1, 1991
    Assignee: William F. McLaughlin
    Inventors: Donald W. Schoendorfer, Claude E. Berthe
  • Patent number: 5034135
    Abstract: A system for separating at least one constituent from a liquid suspension such as blood induces high velocity flow by viscous drag about the circumference of a spinner having a filtration membrane with pore size selected for the desired constituent. The high velocity circumferential flow is bounded by a spaced apart shear wall, with a spacing selected relative to the diameter of the spinner and its rotational velocity, also with respect to the viscosity of the suspension, to establish a flow within the shear gap, as substantial centrifugal forces are exerted upon the suspension. Under these conditions, filtrate in contact with the membrane is replenished, and filtrate passes through the membrane with minimal adverse effects from deposition and concentration polarization, and with high efficiency because of high shear levels that are maintained. The filtrate is collected within the interior of the spinner in a conduit system and passed to an outlet orifice.
    Type: Grant
    Filed: May 8, 1987
    Date of Patent: July 23, 1991
    Assignee: William F. McLaughlin
    Inventor: Halbert Fischel
  • Patent number: 4911833
    Abstract: A centrifugal separator system is provided for extracting lighter matter from a liquid suspension. The separator includes a housing having an axis, an inlet port, a lighter matter outlet port and a heavier matter outlet port spaced from the inlet port. A rotatable interior double shell rotor is disposed within the housing. The rotor includes outer and inner shells and defines a centrifugation gap therebetween. The rotor is spaced from the housing by a flow gap. The outer shell includes means providing communication between the centrifugation gap, the inlet port and the heavier outlet port. Means are provided in the double shell rotor for conducting lighter matter from the centrifugation gap to the lighter matter outlet port.
    Type: Grant
    Filed: June 6, 1988
    Date of Patent: March 27, 1990
    Assignee: William F. McLaughlin
    Inventors: Donald W. Schoendorfer, William F. McLaughlin
  • Patent number: 4776964
    Abstract: A hemapheresis system and method in accordance with the invention comprises a stationary closed housing concentric about a central axis and a feed system that moves blood upwardly from the housing lower end toward an outlet port adjacent a substantially closed upper end. Within the stationary housing is a double walled rotor concentric with the housing and rotatable by magnetic means within the housing on sealed end bearings. The space between the rotor walls defines a centrifugation gap into which whole blood is passed and within which centrifugal separation takes place as the rotor is spun at a relatively low rate. Whole blood also seeks to flow upwardly in the space between the rotor and housing, but this path is arranged to have a substantially higher flow impedance, so that the preferential path is within the centrifugation gap.
    Type: Grant
    Filed: August 24, 1984
    Date of Patent: October 11, 1988
    Assignee: William F. McLaughlin
    Inventors: Donald W. Schoendorfer, William F. McLaughlin