Patents Assigned to Wilson Greatbatch Ltd
  • Patent number: 6117195
    Abstract: A final closure sealing member and a method for hermetically sealing an opening, such as an electrolyte fill opening in an electrochemical cell or a battery, are disclosed. After a cell is fully assembled and filled with electrolyte, the present sealing member is force-fit into sealing registry with the electrolyte fill opening to form a secondary seal for the cell. PreferablY, an outwardly facing portion of the sealing member is flush or slightly recessed with the side wall surrounding the fill opening. Then, the outwardly facing portion is welded to the opening side wall to form a primary hermetic seal.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: September 12, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Allen Honegger
  • Patent number: 6110622
    Abstract: A current collector in the form of a conductive substrate subjected to a special chemical etch on both major surfaces to provide a "basket weave" structure, is described. The basket weave structures has a lattice construction surrounded by a frame and comprising first strand structures intersecting second strand structures to provide a plurality of diamond-shaped openings or interstices bordered by the strands. The strand structures intersect or join with each other at junctions thereby forming the current collector as an integral unit.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: August 29, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Christine A. Frysz, Dominick J. Frustaci, Joseph M. Probst, William C. Thiebolt, III, William M. Paulot
  • Patent number: 6096447
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one phosphonate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and an alkyl phosphonate additive.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: August 1, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6096391
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu. The native oxide layer of the substrate is changed from electrically insulating to electrically conductive. The step of depositing is carried out by a low temperature arc vapor deposition process. The deposition may be performed on either treated or untreated substrate. The substrate with native oxide layer made electrically conductive is useable in the manufacture of electrodes for devices such as capacitors and batteries.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: August 1, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Barry C. Muffoletto, Ashish Shah
  • Patent number: 6087809
    Abstract: A power source including two alkali metal/transition metal oxide cells discharged in parallel to power an implantable medical device is described. The first cell powers the medical device in both a device monitoring mode, for example in a cardiac defibrillator for monitoring the heart beat, and a device actuation mode for charging capacitors requiring high rate electrical pulse discharging. At such time as the first cell is discharged to a predetermined voltage limit, the first cell is disconnected from pulse discharge duty and only used for the device monitoring function. At that time, the second cell is utilized for the high rate electrical pulse discharging function. When the first cell reaches 100% efficiency or a present voltage limit, the second cell then takes over both device monitoring and device actuation functions. In that manner, a greater average discharge efficiency is realized from the two cells than is capable of being delivered from a single cell of similar chemistry.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: July 11, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 6068950
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one phosphate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and an alkyl phosphate additive.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: May 30, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6063526
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one dicarbonate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and an alkyl dicarbonate additive.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: May 16, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6060184
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one nitrate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and an alkali metal nitrate, alkaline earth metal nitrate and/or an organic alkyl nitrate additive.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: May 9, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6057062
    Abstract: The present invention relates to an improved method for synthesizing unsymmetric linear organic carbonates comprising the reaction of two symmetric dialkyl carbonates, R.sup.1 and R.sup.2, in the presence of a nucleophilic reagent or an election donating reductant as a catalyst, wherein R.sup.1 and R.sup.2 can be either saturated or unsaturated alkyl or aryl groups, is described. The presence invention further provides a preparation method for a nonaqueous organic electrolyte having an unsymmetric linear organic carbonate as a co-solvent.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: May 2, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Marcus J. Palazzo, Esther S. Takeuchi
  • Patent number: 6045943
    Abstract: A flat-folded, multi-plate electrode assembly is described. The electrode assembly consists of anode and cathode electrodes in the form of continuous strips having extension plates which are first folded against their connection electrode portions to provide anode and cathode plate pairs. The anode and the cathode are then operatively associated with each other such that at least a portion of the anode strip is interleaved between corresponding ones of the cathode plate pairs and at least a portion of the cathode strip is interleaved between corresponding ones of the anode plate pairs. The assembly is then "Z" folded into the desired electrode stack. The extension plates of both electrodes insure electrode overlap in each and every fold, thereby optimizing electrode output. This design has the advantage of permitting the electrodes to be enlarged due to the electrode configuration and header connection, eliminates multiple components and insures matched electrode overlap.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: April 4, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Michael R. Nowaczyk
  • Patent number: 6037077
    Abstract: An electrode assembly constructed of continuous anode and cathode electrode that are overlaid in overlapping fashion and folded several times rather than wound into a cylinder in the conventional "jelly roll" electrode assembly. The electrode assembly has a first side that is curved substantially along a single arc and a second side opposite the first side that is curved substantially along a plurality of arcs. The electrode assembly is designed for casings for electrochemical cells or batteries having profiles that are not well suited for the jelly roll configuration.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: March 14, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Michael R. Nowaczyk
  • Patent number: 6030422
    Abstract: A perforated fabric for modifying the effective electrochemical surface area of a cell is described. The size and pattern of perforations in the fabric determine the effective electrochemical surface area of the cell. In practice, the modified cell comprises a layer of perforated fabric placed between the anode and the cathode along with a suitable electrolyte absorbent separator material. Electrodes are then assembled into a cell using typical techniques with a spirally-wound configuration being preferred. The present perforated fabric provides for the production of cells with variable effective electrochemical surface areas while using a single manufacturing line. A preferred cell chemistry comprises a fluorinated carbon electrode present in an alkali metal system with the preferred perforated fabric comprising a Fluorpeel fabric, which is a woven fiberglass cloth impregnated with PTFE polymer.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: February 29, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Michael F. Pyszczek
  • Patent number: 6027827
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one nitrite additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and an alkyl nitrite additive.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: February 22, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6013394
    Abstract: An alkali metal, solid cathode, nonaqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one organic sulfate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and a dialkyl sulfate additive.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: January 11, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6013113
    Abstract: In fabrication of conventional spirally wound cells, a length of separator is provided at least twice as long as one of the electrodes, for example, the cathode, and then folded to cover both sides of the electrode. The separator is also somewhat wider than the covered electrode to extend beyond the upper and lower edges thereof. The cathode assembly is then placed along side a strip of anode material and rolled into a jellyroll configuration. The separator sheet is not sealed at the opposed upper and lower edges of the cathode, and during high shock and vibration conditions the edges tend to mushroom which can lead to short circuit conditions. The insulator of the present invention is a slotted member that covers the upper and lower edges of the other electrode not covered by the separator, for example the anode with the anode leads extending through the slots to shield them from short circuit conditions with the cell casing or other leads if the cell should be subjected to severe shock forces and the like.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: January 11, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Mark L. Mika
  • Patent number: 6008625
    Abstract: A power source including two alkali metal/transition metal oxide cells discharged in parallel to power an implantable medical device is described. The first cell powers the medical device in both a device monitoring mode, for example in a cardiac defibrillator for monitoring the heart beat, and a device actuation mode for charging capacitors requiring high rate electrical pulse discharging. At such time as the first cell is discharged to a predetermined voltage limit, the first cell is disconnected from pulse discharge duty and only used for the device monitoring function. At that time, the second cell is utilized for the high rate electrical pulse discharging function. When the first cell reaches 100% efficiency or a present voltage limit, the second cell then takes over both device monitoring and device actuation functions. In that manner, a greater average discharge efficiency is realized from the two cells than is capable of being delivered from a single cell of similar chemistry.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: December 28, 1999
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Esther S. Takuchi
  • Patent number: 6004692
    Abstract: A lithium electrochemical cell including an anode and cathode assembly with the anode connected electrically to a conductive cell casing and an insulated cathode conductor extending through a lid at an end of the casing and connected to a cathode lead near the lid and with a first insulating component for insulating the casing from cell components therein and extending along and within the casing from a closed end thereof toward the lid, and which is characterized by a second insulating component for insulating the lid from components in the casing and extending along within the lid and toward the first insulating bag so as to prevent a short circuit between the lid or casing and the cathode assembly caused by formation of lithium clusters in the region between the lid or casing and the cathode connector.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: December 21, 1999
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Barry C. Muffoletto, Raymond J. Kuwik
  • Patent number: 5965291
    Abstract: A perforated fabric for modifying the effective electrochemical surface area of a cell is described. The size and pattern of perforations in the fabric determine the effective electrochemical surface area of the cell. In practice, the modified cell comprises a layer of perforated fabric placed between the anode and the cathode along with a suitable electrolyte absorbent separator material. Electrodes are then assembled into a cell using typical techniques with a spirally-wound configuration being preferred. The present perforated fabric provides for the production of cells with variable effective electrochemical surface areas while using a single manufacturing line. A preferred cell chemistry comprises a fluorinated carbon electrode present in an alkali metal system with the preferred perforated fabric comprising a Fluorpeel fabric, which is a woven fiberglass cloth impregnated with PTFE polymer.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: October 12, 1999
    Assignee: Wilson Greatbatch Ltd.
    Inventor: Michael F. Pyszczek
  • Patent number: 5962720
    Abstract: The present invention relates to an improved method of synthesizing unsymmetric linear organic carbonates comprising the reaction of two symmetric dialkyl carbonates, R.sup.1 and R.sup.2, in the presence of a nucleophilic reagent or an election donating reductant as a catalyst, wherein R.sup.1 and R.sup.2 can be either saturated or unsaturated alkyl or aryl groups, is described. The present invention further provides a preparation method for a nonaqueous organic electrolyte having an unsymmetric linear organic carbonate as a co-solvent.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: October 5, 1999
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Marcus Palazzo, Esther S. Takeuchi
  • Patent number: 5935728
    Abstract: An electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region disposed in a jellyroll wound configuration intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electreolyte.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: August 10, 1999
    Assignee: Wilson Greatbatch Ltd.
    Inventors: David M. Spillman, Esther S. Takeuchi