Abstract: A system for de-erection and re-erection of a blade of a wind turbine, the system comprising at least one first pulley, at least one second pulley, at least one third pulley, a receptacle disposed over a substantial length of the blade, a lifting line passing over the at least one first pulley, the at least one second pulley, the at least one third pulley and attached back to the at least one second pulley, at least one load bearing mechanism configured for pulling and releasing of the lifting line to enable vertical motion of the receptacle disposed over the blade, a load supporting mechanism connected to an operative bottom portion of the blade and configured to support the blade during de-erection and re-erection thereof and at least one holding mechanism attached to the at least one third pulley, the at least one holding mechanism adapted to hold the receptacle.
Abstract: A method and an arrangement for removing and lifting of a blade pitch slewing ring bearing of a wind turbine after a blade from a rotor hub of the wind turbine is removed, is disclosed. The arrangement and method enables the lowering and lifting of the wind turbine without the need of large and heavy cranes so that the replacement can be carried out cost effectively. The arrangement includes a first pulley mounted at the bottom of the wind turbine, a second pulley mounted inside a rotor hub, a lifting line running over the first pulley, the second pulley and further over a third pulley mounted inside a carrier. The carrier supports the blade pitch slewing ring bearing during lifting and lowering which is achieved through a coordinated operation of a ground winch, the lifting line and tag lines. Further, rigging equipment is attached to the lowered blade pitch slewing ring bearing to enable easy transportation.