Abstract: A digitally encoded microflake includes a polymer layer, which has a top surface and a bottom surface substantially parallel to the top surface. At least one of the top surface and the bottom surface is to be coupled to target-specific probes for bonding with a target analyte. The microflake is identified by a binary sequence of bits encoded by an edge outline on a plane substantially parallel to the top surface and the bottom surface. The bits in the binary sequence are encoded at respective predefined locations surrounding the edge outline.
Abstract: A digitally encoded microflake includes a polymer layer, which has a top surface and a bottom surface substantially parallel to the top surface. At least one of the top surface and the bottom surface is to be coupled to target-specific probes for bonding with a target analyte. The microflake is identified by a binary sequence of bits encoded by an edge outline on a plane substantially parallel to the top surface and the bottom surface. The bits in the binary sequence are encoded at respective predefined locations surrounding the edge outline.
Abstract: A method for fabricating a micro-electro-mechanical system (MEMS) device. The method comprises placing a guiding mask on an application platform, the guiding mask including an opening that defines the position of a MEMS part to be placed on the application platform. The method further comprises placing the MEMS part into the opening of the guiding mask on the application platform, and removing the guiding mask from the application platform after the MEMS part is bonded to the application platform.