Patents Assigned to Wistar Institute
  • Patent number: 11033541
    Abstract: Methods and compositions are described for enhancing tissue regeneration or wound repair in a mammalian subject comprising a composition comprising (a) a proline hydroxylase inhibitor component or molecule that increases or upregulates HIF1a and (b) a carrier component comprising a hydrogel.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 15, 2021
    Assignees: Northwestern University, The Wistar Institute of Anatomy and Biology
    Inventors: Phillip B. Messersmith, Iossif A. Strehin, Ellen Heber-Katz
  • Patent number: 10987353
    Abstract: In some embodiments, therapeutic treatments for a disease such as a cancer are disclosed, including pharmaceutical compositions and methods of using pharmaceutical compositions for treating the cancer wherein the cancer cells overexpress arginine methyltransferase CARM1. In some embodiments, the therapeutic treatments disclosed include methods comprising the step of administering a therapeutically effective dose of an enhancer of zeste homolog 2 (EZH2) inhibitor to a subject, including a human subject, wherein the cancer cells of the subject overexpress arginine methyltransferase CARM1. In some embodiments, the EZH2 inhibitors are administered in conjunction with platinum-based antineoplastic drugs.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 27, 2021
    Assignee: The Wistar Institute of Anatomy and Biology
    Inventors: Rugang Zhang, Sergey Karakashev
  • Publication number: 20210113602
    Abstract: Targeting RAS is one of the greatest challenges in cancer therapy. Oncogenic mutations in NRAS are present in over 25% of melanomas and patients whose tumors harbor NRAS mutations have limited therapeutic options and poor prognosis. Thus far, there are no clinical agents available to effectively target NRAS or any other RAS oncogene. An alternative approach is to identify and target critical tumor vulnerabilities or non-oncogene addictions that are essential for tumor survival. The inventors investigated the consequences of NRAS blockade in NRAS-mutant melanoma and show that decreased expression of the telomerase catalytic subunit, TERT, is a major consequence. TERT silencing or treatment of NRAS-mutant melanoma with the telomerase-dependent telomere uncapping agent 6-thio-2?-deoxy-guanosine (6-thio-dG), led to rapid cell death, along with evidence of both telomeric and non-telomeric DNA damage, increased ROS levels, and upregulation of a mitochondrial anti-oxidant adaptive response.
    Type: Application
    Filed: February 28, 2019
    Publication date: April 22, 2021
    Applicants: The Board of Regents of the University of Texas System, The Wistar Institute of Anatomy and Biology
    Inventors: Jerry SHAY, Gao ZHANG
  • Patent number: 10981867
    Abstract: The present invention provides EBNA1 inhibitors, and/or pharmaceutical compositions comprising the same, that are useful for the treatment of diseases caused by EBNA1 activity, such as, but not limited to, cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus and/or rheumatoid arthritis. The present invention further provides EBNA1 inhibitors, and/or pharmaceutical compositions comprising the same, that are useful for the treatment of diseases caused by latent Epstein-Barr Virus (EBV) infection and/or lytic EBV infection.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: April 20, 2021
    Assignee: The Wistar Institute of Anatomy and Biology
    Inventors: Troy E. Messick, Garry R. Smith, Allen B. Reitz, Paul M. Lieberman, Mark E. McDonnell, Yan Zhang, Marianne Carlsen, Shuai Chen
  • Patent number: 10953108
    Abstract: The invention includes compositions and methods of generating a chimpanzee-derived adenovirus AdC6 or AdC7 vector vaccine comprising a deletion of E1, a deletion of E3 ORF3, ORF4, ORF5, ORF6, and ORF7 and a sequence encoding HIV protein gp140, gp160 or Gag, methods of treating and/or preventing or immunizing against HIV and methods of inducing an effector T cell, memory T cell and B cell immune response in a mammal administered the composition produced thereby. Furthermore, the invention encompasses a pharmaceutical composition for vaccinating a mammal as well as a protein expression system.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: March 23, 2021
    Assignee: The Wistar Institute of Anatomy and Biology
    Inventors: Hildegund C. J. Ertl, Xiang Yang Zhou
  • Patent number: 10828363
    Abstract: The present invention relates to compositions comprising two or more DNA plasmids encoding consensus and transmitted founder HIV envelope glycoproteins which expressed and induce a potent immune response.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: November 10, 2020
    Assignees: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY
    Inventors: David Weiner, Megan Wise
  • Patent number: 10822619
    Abstract: This disclosure provides replication-incompetent adenoviral vectors useful in vaccine development and gene therapy. The disclosed vectors comprise a selective deletion of E3 and are particularly useful for preparation of vaccines development and for gene therapy using toxic transgene products that result in vector instability that occurs when the entire E3 domain is deleted.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 3, 2020
    Assignee: The Wistar Institute
    Inventors: Hildegund C. J. Ertl, Xiang Yang Zhou
  • Patent number: 10745761
    Abstract: The present invention relates to methods and systems for high risk screening, diagnosis, prognosis, and surveillance of lung cancer. Accordingly, in one aspect, the invention provides a method for diagnosing or evaluating whether a subject has, or is at risk of having, lung cancer such as NSCLS. The method comprises obtaining a first expression level of the AKAP4 gene of a population of cells from the blood of a test subject; and comparing the first expression level with a first predetermined reference value. A difference between the first expression level and first predetermined reference value correlates with a diagnosis or evaluation of a lung cancer.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 18, 2020
    Assignees: Valley Health System, The Wistar Institute of Anatomy and Biology
    Inventors: Kiranmai Gumireddy, Qihong Huang, Louise C. Showe, Ganepola A Ganepola
  • Patent number: 10640810
    Abstract: Provided herein are methods of detecting a target nucleic acid sequence. In one embodiment, the method includes contacting genomic DNA with a guide RNA having a portion complementary to the target sequence in the genomic DNA and with Cas9 nickase to produce a single-strand break in the genomic DNA at a specific location adjacent to the target sequence. The method further includes contacting the nicked DNA with a polymerase and fluorescently labeled nucleotide. The fluorescently labeled nucleotide is incorporated into the nicked DNA at the specific location and the target nucleic acid sequence is detected via fluorescent label.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 5, 2020
    Assignees: Drexel University, The Wistar Institute of Anatomy and Biology, Temple University
    Inventors: Ming Xiao, Harold C. Riethman, Wenhui Hu, Jennifer McCaffrey
  • Publication number: 20200123613
    Abstract: Methods and compositions are provided for diagnosing lung cancer in a mammalian subject by use of 10 or more selected genes, e.g., a gene expression profile, from the blood of the subject which is characteristic of disease. The gene expression profile includes 10 or more genes of Table I or Table II herein.
    Type: Application
    Filed: June 21, 2017
    Publication date: April 23, 2020
    Applicant: The Wistar Institute of Anatomy and Biology
    Inventors: Michael SHOWE, Louise C. SHOWE, Andrei V. KOSSENKOV
  • Patent number: 10442763
    Abstract: The present invention provides EBNA1 inhibitors, and/or pharmaceutical compositions comprising the same, that are useful for the treatment of diseases caused by EBNA1 activity, such as, but not limited to, cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus and/or rheumatoid arthritis. The present invention further provides EBNA1 inhibitors, and/or pharmaceutical compositions comprising the same, that are useful for the treatment of diseases caused by latent Epstein-Barr Virus (EBV) infection and/or lytic EBV infection.
    Type: Grant
    Filed: May 14, 2016
    Date of Patent: October 15, 2019
    Assignee: THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY
    Inventors: Troy E. Messick, Garry R. Smith, Allen B. Reitz, Paul M. Lieberman, Mark E. McDonnell, Yan Zhang, Marianne Carlsen, Shuai Chen
  • Publication number: 20190298751
    Abstract: The present disclosure provide for methods of using 6-thio-2?-deoxyguanosine (6-thio-dG) to treat telomerase-positive cancers that exhibit (a) one or more TERT promoter mutations, and/or (b) enriched telomere transcriptional signature(s). In particular, melanomas, including those who are not sensitive or have become resistant to immune checkpoint inhibition and/or MAPKi therapy are targets for this therapy.
    Type: Application
    Filed: May 26, 2017
    Publication date: October 3, 2019
    Applicants: The Board of Regents of the University of Texas System, The Wistar Institute of Anatomy and Biology
    Inventors: Jerry W. SHAY, Gao ZHANG
  • Patent number: 10421718
    Abstract: Pharmaceutical compositions of the invention comprise EBNA1 inhibitors useful for the treatment of diseases caused by EBNA1 activity such as cancer, infectious mononucleosis, chronic fatigue syndrome, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis. Pharmaceutical compositions of the invention also comprise EBNA1 inhibitors useful for the treatment of diseases caused by latent Epstein-Barr Virus (EBV) infection. Pharmaceutical compositions of the invention also comprise EBNA1 inhibitors useful for the treatment of diseases caused by lytic Epstein-Barr Virus (EBV) infection.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: September 24, 2019
    Assignee: THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY
    Inventors: Troy E. Messick, Garry R. Smith, Allen B. Reitz, Paul M. Lieberman, Mark E. McDonnell, Yan Zhang, Venkata Velvadapu
  • Patent number: 10414810
    Abstract: The invention concerns a variant (double mutant form) of the survivin polypeptide; nucleic acid molecules encoding the survivin variant; antigen presenting cells (APCs) such as dendritic cells, or APC precursors, comprising the variant survivin polypeptide or encoding nucleic acid sequence; and methods for treating a malignancy, such as myeloma, or for inducing an immune response, utilizing a variant survivin polypeptide, nucleic acid molecule, or APC.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: September 17, 2019
    Assignees: H. LEE MOFFITT CANCER CENTER AND RESEARCH INSTITUTE, INC., THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY
    Inventors: Frederick L. Locke, Dario Altieri, Scott Antonia, Claudio Anasetti, Dmitry Gabrilovich
  • Patent number: 10407696
    Abstract: This disclosure provides replication-incompetent adenoviral vectors useful in vaccine development and gene therapy. The disclosed vectors comprise a selective deletion of E3 and are particularly useful for preparation of vaccines development and for gene therapy using toxic transgene products that result in vector instability that occurs when the entire E3 domain is deleted.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 10, 2019
    Assignee: The Wistar Institute
    Inventors: Hildegund C. J. Ertl, Xiang Yang Zhou
  • Patent number: 10351851
    Abstract: Compositions, e.g., therapeutic agents, and methods are provided for modulating gene and protein expression of Forkhead Box protein 1 (Foxp1). The therapeutic agents include short nucleic acid molecules that modulate gene and protein expression of Forkhead Box protein 1 (Foxp1) expression, viral vectors containing such molecules, T cells transduced with these viruses for adoptive therapies, and any small molecules that bind to and inactivate Foxp1. These compounds and methods have applications in cancer therapy either alone or in combination with other therapies that stimulate the endogenous immune system in the environment of the cancer, e.g., tumor.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 16, 2019
    Assignee: The Wistar Institute of Anatomy and Biology
    Inventors: Hui Hu, Jose R. Conejo-Garcia, Tom-Li Stephen
  • Patent number: 10338076
    Abstract: A diagnostic reagent or device comprises at least one ligand capable of specifically complexing with, binding to, or quantitatively detecting or identifying the biomarker chloride intracellular channel protein 4 (CLIC4) or an isoform, pro-form, modified molecular form including posttranslational modification, or unique peptide fragment or nucleic acid fragment thereof. An alternative diagnostic reagent or device comprises ligand or ligands capable of specifically complexing with, binding to, or quantitatively detecting or identifying multiple tropomyosin biomarkers. Optionally, such reagent or device includes a signaling molecule and/or a substrate on which the ligand is immobilized. Other reagents and methods of diagnosing ovarian cancer include use of CLIC4 ligands and/or multiple tropomyosin ligands with an additional ovarian cancer biomarker. For example, CLIC4 combined with one or more of CLIC1 and/or one or multiple members of the tropomyosin family, e.g.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 2, 2019
    Assignee: The Wistar Institute of Anatomy and Biology
    Inventors: David W. Speicher, Hsin Yao Tang, Lynn A. Beer
  • Patent number: 10328146
    Abstract: Chimeric protein constructs including a herpesvirus glycoprotein D (gD) and a heterologous polypeptide that interact with herpes virus entry mediator (HVEM) and enhance and enhance an immune response against the heterologous polypeptide and methods for their use are provided.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 25, 2019
    Assignee: THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY
    Inventors: Hildegund C. J. Ertl, Marcio O. Lasaro, Luis C. S. Ferreira
  • Patent number: 10329355
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention relates to targeting the stromal cell population in a tumor microenvironment. For example, in one embodiment, the invention provides a composition that is targeted to fibroblast activation protein (FAP). The invention includes a chimeric antigen receptor (CAR) which comprises an anti-FAP domain, a transmembrane domain, and a CD3zeta signaling domain.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: June 25, 2019
    Assignees: The Trustees of the University of Pennsylvania, The Wistar Institute of Anatomy and Biology
    Inventors: Carl H. June, Ellen Pure, Liang-Chuan Wang, Steven Albelda, John Scholler
  • Publication number: 20190177411
    Abstract: Therapeutic treatments of a tumor expressing pT346 PDK1, including glioma expressing pT346 PDK1, are disclosed.
    Type: Application
    Filed: August 4, 2017
    Publication date: June 13, 2019
    Applicant: The Wistar Institute of Anatomy and Biology
    Inventor: Dario C. Altieri