Abstract: A continuous flotation process and apparatus for iron-containing sulphides in ores and concentrates of ores are disclosed. The process includes adjusting the pH of an aqueous pulp of the ores or concentrates of the ores to be in the range of 6.5-8.5 and thereafter adding a reducing agent to modify an iron hydroxide film on the surface of iron-containing sulphides in the ores or ore concentrates to enable adsorption of a collector onto iron-containing sulphides. The process also includes adding the collector to the pulp prior to, during, or after adding the reducing agent. The process also includes aerating the pulp to increase the pulp potential to a level sufficient to allow collector adsorption onto the iron-containing sulphides and thereafter bubbling gas through the pulp and subjecting the aqueous pulp to froth flotation to produce a froth containing said sulphide containing minerals.
Type:
Grant
Filed:
September 16, 2003
Date of Patent:
July 13, 2010
Assignee:
WMC Resources Ltd.
Inventors:
Brendan Pyke, Geoff Senior, Scott Thomas
Abstract: The present invention relates generally to a method of extracting cobalt and other impurity metals from a concentrated nickel sulphate solution by a solvent extraction process whereby a cationic solvent extractant is separately pre-equilibrated with a portion of a purified nickel sulphate solution in such a manner that it is loaded with nickel without precipitating insoluble nickel double salts. The nickel loaded extracted is then transferred to an impure cobalt nickel solution where the cobalt and certain other impurity metals exchange with nickel leaving a purified concentrated nickel sulphate solution suitable for hydrogen reduction or electrowinning. The cobalt loaded extractant is stripped with dilute sulphuric acid before being recycled while an aqueous cobalt stripped solution is further processed to recover cobalt.
Abstract: The present invention relates generally to a process and an apparatus for flotation of sulphide minerals, such as sulphide minerals hosted in ores rich in magnesium minerals. The process involves grinding of the nickel ore rich in magnesium minerals and thereafter separation of the ground material into a coarse and fine stream of particles coarser than about 30 microns and finer than about 30 microns, respectively. Optionally, the fines stream may be further separated into a slimes fraction. The coarse and fine flotation streams are then fit to separate parallel flotation circuits. Acid and/or activator is added during flotation of the coarse stream only. Significantly improved recoveries and grades were obtained with reduced acid consumption.
Abstract: A wall lining for a furnace (10) includes a refractory layer (14) having a hot face (16) exposed to the interior of the furnace. A plurality of elements of a high thermal conductivity material (18), such as copper wires or rods, extend from the outer shell (12) of the furnace into the refractory lining (14). The elements (18) provide a continuous heat conduction path to the outer shell (12) of the furnace. A cooling jacket (22) removes heat from the outer shell. The elements (18) are dispersed in the refractory lining (14) to provide a substantially uniform temperature across the hot face of the furnace in the vicinity of the elements. The wall lining may be formed by fixing an array of the elements to the inside wall of the outer shell of the furnace and applying a refractory material to the inside wall.
Type:
Grant
Filed:
November 14, 1996
Date of Patent:
July 28, 1998
Assignees:
The University of Melbourne, WMC Resources Ltd.
Inventors:
Neil Boon Gray, Jonathan Alan Harris, Anthony Regnar Leggett, Barry John Elliott