Abstract: A method of operating a wind power installation selectively in a first or second operating mode is disclosed. In the first operating mode, the installation generates as much electrical power as possible based on the prevailing wind and design of the wind power installation, and in the second operating mode generates less electrical power than in the first operating mode. The wind power installation is controlled in the first and second operating modes with first and second adjustment parameter sets, respectively. When the installation is operated in the second operating mode the maximum power which can be generated with the first adjustment parameter set or a differential power between the maximum power and a power currently generated in the second operating mode may be ascertained. The second adjustment parameter set may be selected based on a desired power reduction and the maximum power.
Abstract: A wind turbine tower is provided with a plurality of tower segment which are placed one on top of the other in order to form the tower. A lower tower segment has a lower end face, and in the lower region of the lower tower segment, the lower tower segment has a plurality of recesses and through-bores between the lower end face of the lower tower segment and a base of the recesses. The recesses are designed to receive a leveling unit for leveling the lower tower segment. The recesses are preferably provided on the inner face of the lower tower segment and provide an effective possibility for receiving leveling units.
Abstract: The invention concerns a method for monitoring a cable strand containing multiple electrical lines, such that the cable strand is designed to conduct electrical energy generated by a generator in a wind turbine involving the steps: measuring the temperature of at least two of the electrical lines, comparing the temperatures of said lines, and determining whether the two temperatures deviate from one another by more than a predefined threshold.
Abstract: The invention concerns an apparatus, a method and a use of the apparatus for automatically twisting metal wires. The invention concerns in particular such an apparatus for connecting adjacent, preferably mutually crossing structural elements, comprising a wire feed means for feeding wire, preferably endless wire, into the apparatus, an arcuate wire guide which has a selectively openable and closable opening and which is adapted to guide the fed wire in the closed position along the arcuate wire guide from a first side of the arcuate wire guide to a second side of the arcuate wire guide, that is in opposite relationship with respect to the opening, a pulling slider adapted to engage the fed wire on the first side of the arcuate wire guide and to pull it towards the second side of the arcuate wire guide, and a twisting unit adapted to engage the fed wire on both sides of the arcuate wire guide and to twist it by means of a rotational movement.
Abstract: There is provided a climbing locking system for climbing ladders in particular of a wind power installation. The climbing locking system has at least one climbing ladder segment having a longitudinal direction and at least one open end for accommodating a fall arrester which can move back and forth as a climbing protection system along the longitudinal direction. The climbing locking system also has at least one climbing locking unit at the at least one open end of the climbing ladder segment. The climbing locking unit is fastened pivotably to the climbing ladder segment and has a locking position for locking a movement of a fall arrester along a direction of the climbing ladder segment and a passing position for allowing a movement of the fall arrester along the longitudinal direction of the climbing ladder segment in both directions.
Abstract: The present disclosure concerns a transport vehicle for handling a rotor blade mold for the production of a rotor blade of a wind power installation or a shell portion of a rotor blade of a wind power installation, adapted for use in a handling apparatus. The handling apparatus includes a first rail set for displacement of the transport vehicle in a first direction, and a second rail set for displacement of the transport vehicle in a second direction. In addition the transport vehicle includes a first wheel set including a plurality of wheels for movement on the first rail set, and a second wheel set including a plurality of wheels for movement on the second rail set.
Type:
Grant
Filed:
July 1, 2013
Date of Patent:
October 24, 2017
Assignee:
WOBBEN PROPERTIES GMBH
Inventors:
Arno Georgs, Herbert Biebl, Rainer Schlueter
Abstract: The present invention concerns an anchoring section for anchoring a pylon of a wind power installation in a foundation, including a carrier portion for fixing a pylon segment for carrying the pylon and a foundation portion for concreting in a concrete mass of the foundation, and the foundation portion has at least one web portion with through openings for reinforcing bars to pass therethrough.
Abstract: The present invention concerns a method of operating a wind power installation comprising a pod with an electric generator for generating electric current and an aerodynamic rotor coupled to the generator and having one or more rotor blades, including the steps: operating the wind power installation when ice accretion on the rotor blades can be certainly excluded, and stopping the wind power installation when ice accretion on the rotor blades is detected, and time-delayed stoppage or prevention of restarting of the wind power installation when an ice accretion was not detected but is to be expected, and/or time-delayed resumption of operation of the wind power installation when a stoppage condition which led to stoppage of the wind power installation has disappeared again and ice accretion was not detected and ice accretion or the formation of an ice accretion is not to be expected.
Abstract: The invention relates to a method for controlling a water sluice gate drive for a water sluice gate, in particular for a roller sluice gate, preferably in a hydroelectric power plant, wherein the drive has an electric machine, in particular has an asynchronous machine, in particular an asynchronous motor/generator. According to the invention, it is provided that the electric machine, in particular an asynchronous machine, has a fan brake, wherein the method comprises the steps of: disengagement of the fan brake in the case that an insufficient power supply is indicated, self-actuated operation of the electric machine, in particular an asynchronous machine, wherein the electric machine, in particular an asynchronous machine, is operated in generative island operation, in which a rotating field is generated in a self-actuating manner.
Abstract: There is provided a wind power installation rotor blade having a rotor blade root, a rotor blade tip, a rotor blade leading edge, a rotor blade trailing edge, a pressure side and a suction side. The rotor blade further has a rotor blade outer casing with at least one opening in the pressure and/or suction side for receiving handling means for fitting or removing the rotor blade. The rotor blade also has at least one fixing unit for fixing the handling means which are introduced through the at least one opening. The fixing unit is arranged in the interior of the rotor blade outer casing between the pressure side and the suction side.
Abstract: The invention concerns a rotor blade of a wind power installation, comprising a rotor blade root (4) for attachment of the rotor blade to a rotor hub and a rotor blade tip arranged at a side remote from the rotor blade root, as well as a wind power installation having such rotor blades. In that arrangement a relative profile thickness which is defined as the ratio of profile thickness to profile depth has a local maximum in a central region between rotor blade root and rotor blade tip.
Abstract: The invention concerns a pole shoe, in particular of a generator, comprising a pole assembly which is of a laminated configuration, at least one winding arranged around the pole assembly, and a body which passes through the laminated pole assembly in the longitudinal direction and which has a plurality of transversely directed engagement locations, preferably at most three transversely directed engagement locations, into which a respective holding means can engage to fasten the pole shoe on a support, in particular the rotor or stator of a generator. The present invention further concerns a pole shoe, in particular of a generator, comprising a pole assembly which is of a laminated configuration, at least one winding arranged around the pole assembly, and an insulating means arranged between the pole assembly and the winding, wherein the insulating means has a fiber composite material.
Abstract: The invention relates to a slip ring assembly of a slip ring transducer for transducing electrical signals between a stationary part and a part which rotates around an axis of rotation, comprising: at least one slip ring for transducing one of the electrical signals between the slip ring and at least one slip element trailing thereon, in particular a brush, and a slip ring shaft for securing the at least one slip ring thereon, the slip ring shaft having guiding channels distributed along its circumference in order to receive electrical lines for electrically connecting the at least one slip ring.
Type:
Grant
Filed:
November 6, 2013
Date of Patent:
August 22, 2017
Assignee:
WOBBEN PROPERTIES GMBH
Inventors:
Frank Gerdes, Aike Janssen, Matthias Haller
Abstract: The invention relates to a method for controlling a feed arrangement having a wind energy installation for feeding electrical power into an electrical supply system, comprising the following steps: generating electrical power using the wind energy installation from wind, feeding a first proportion of the generated electrical power into the electrical supply system, supplying a second proportion of the generated electrical power to an electrical consumer for consuming the supplied second proportion of the generated electrical power, and wherein, depending on at least one monitored system state and/or depending on the prevailing wind, the second proportion of the generated electrical power which is supplied to the consumer is reduced wholly or partially and the first proportion of the electrical power fed into the electrical supply system is increased correspondingly, and to a corresponding feed arrangement.
Abstract: A rotor blade of a wind turbine. The rotor blade comprises at least one rotor-blade inner portion, having a region connecting to the rotor-blade hub, and at least one rotor-blade outer portion, having a rotor-blade tip, the rotor-blade inner portion and the rotor-blade outer portion each being made substantially of a fibre-reinforced plastic, and the rotor-blade inner portion and the rotor-blade outer portion being connected to each other by a connecting device. The connecting device in this case comprises an inner insert that is at least partially wrapped in the fibre-reinforced plastic of the rotor-blade inner portion, an outer insert that is at least partially incorporated in the fibre-reinforced plastic of the rotor-blade outer portion, the inner insert and the outer insert being connected to each other via a connecting element.
Abstract: The present invention concerns a method of optically assessing a wind power installation or a part thereof, in particular a rotor blade, including the steps: orienting a camera on to a region to be assessed, recording a photograph of the region to be assessed with the camera, detecting the position of the photographed region, and associating the ascertained position with the photographed region.
Abstract: A method for producing a precast concrete tower segment of a wind turbine tower is provided. An inner formwork having at least one bore and at least one holding unit on an inner side of the inner formwork in the region of the bore is placed. A first end of a concrete anchor or a first end of a removable element at the first end of the concrete anchor is introduced from the outer side of the inner formwork through the bore into the holding unit in order to hold the concrete anchor. An outer formwork is placed. Concrete is introduced between the inner and outer formwork. The removable element in the first end or the first end of the concrete anchor is removed and the precast concrete segment is removed.
Abstract: The present invention concerns a method of feeding electric power into an electric network wherein the feed is effected by means of at least one wind power installation with a first feed-in arrangement at a feed-in point into the electric network, and the feed is effected in dependence on electric parameters in the network and measurement values of the electric parameters or measurement values for determining the electric parameters are detected at measurement times at predetermined time intervals and wherein the measurement times are synchronized to an external time signal available outside the first feed-in arrangement.
Abstract: There is provided a turbine for a hydroelectric power plant comprising a hub, a plurality of turbine blades provided on the hub, a pitch angle adjusting unit coupled to the turbine blades for adjusting the pitch angle of the turbine blades, a double-acting hydraulic cylinder and a piston rod connected thereto. The piston rod is coupled to the pitch angle adjusting unit in such a way that the pitch angle adjusting unit performs a rotational movement when the piston rod is moved in the longitudinal direction. The double-acting hydraulic cylinder is provided in a hydraulic chamber coupled by way of a first and a second hydraulic line so that the double-acting hydraulic cylinder is displaceable by feed of a hydraulic fluid through the first or second hydraulic line and thus leads to adjustment of the pitch angle of the turbine blades by way of the coupling to the piston rod and the pitch angle adjusting unit.
Type:
Grant
Filed:
August 31, 2012
Date of Patent:
June 20, 2017
Assignee:
Wobben Properties GmbH
Inventors:
Rolf Rohden, Jan Niko Hauser, Walter Lambertz
Abstract: The invention relates to an anchor, more particularly a fixed anchor, for a tensioning device designed for attachment on a construction for holding tensile cords, such as wires, rods, more particularly tensile wires, tension rods, or the like on the anchor, with a multi-part anchor head, wherein the anchor head has an anchor plate in the form of a perforated disc with a feed-through for separately guiding a tensile cord, wherein the feed-through is one of a number of feed-throughs and the tensile cord is one of a number of tensile cords, as well as an intermediate disc mounted on one side of the perforated disc and having a further feed-through for separately guiding the tensile cord, wherein the further feed-through is one of a number of further feed-throughs in the intermediate disc and the tensile cord is the one of the number of tensile cords.