Abstract: Provided is a method and an apparatus for dry-cleaning an aluminum nitride (AlN) heater for semiconductor fabrication equipment, which may efficiently remove fluorine-containing contaminants generated on the AlN heater during semiconductor fabrication processes, and especially, may effectively and simultaneously remove organic, inorganic metallic, and inorganic contaminants. The method for dry-cleaning an AlN heater for semiconductor fabrication equipment includes steps of: determining a laser to be used for the AlN heater; determining laser control factors required for cleaning the AlN heater with respect to the laser to be used determined in the step of determining the laser to be used; and cleaning the AlN heater by laser irradiation based on the laser control factors determined in the step of determining the laser control factors.
Type:
Application
Filed:
April 16, 2024
Publication date:
October 31, 2024
Applicant:
WONIK QNC Corporation
Inventors:
Eun Young CHOI, Sang Hyun CHO, Seung Jin JUNG, Joo Hee JANG, So Young CHOI, Dong Ho SHIN, Jong Hwan MUN, Min Seob JUNG
Abstract: Disclosed are a processing method for fluorination of a fluorination-target component for semiconductor fabrication equipment, which may realize high density and high strength by fluorinating the fluorination-target component using a fluorinating gas excited into plasma, and at the same time, may significantly reduce plasma contaminant particles which are generated during formation of a fluoride coating, and a fluorinated component obtained by the method.
Abstract: The present disclosure relates to an implant surface modification treatment device including an internal electrode having a barrel-shaped structure and a surface on which a plurality of transmission parts are formed, an ultraviolet (UV) discharge vessel having a barrel-shaped structure that accommodates the internal electrode and has a gas-filled area filled with a discharge gas that serves as a UV light source, and an external electrode accommodating the UV discharge vessel inside thereof, wherein an implant fixture is placed inside the internal electrode to perform surface modification.
Type:
Grant
Filed:
July 12, 2018
Date of Patent:
January 16, 2024
Assignee:
WONIK QNC CORPORATION
Inventors:
Yoon Gwan Ju, Byung No Choi, Geon Rae Kim, Jae Hee Jung
Abstract: Disclosed are a processing method for fluorination of a fluorination-target component for semiconductor fabrication equipment, which may realize high density and high strength by fluorinating the fluorination-target component using a fluorinating gas excited into plasma, and at the same time, may significantly reduce plasma contaminant particles which are generated during formation of a fluoride coating, and a fluorinated component obtained by the method.
Abstract: Disclosed are a processing method for fluorination of a fluorination-target component, which may realize high density and high strength by forming a fluoride coating based on atmospheric pressure high-frequency plasma on various components for semiconductor processes and, at the same time, may significantly increase productivity, and in particular, may ensure normal etch rate in a large-area semiconductor fabrication system, and a fluorinated component obtained by the method.