Abstract: A method of manufacturing a light generating device with required wavelength is disclosed. According to the method, a) a required wavelength is determined. b) A polar angle and an azimuthal angle corresponding to the required wavelength in a nitride semiconductor are determined. Then, c) a nitride semiconductor crystal is grown according to the polar angle and the azimuthal angle. Therefore, a light generating device with required wavelength may be manufactured without adjusting amounts of elements of compound semiconductor.
Type:
Grant
Filed:
October 9, 2008
Date of Patent:
May 15, 2012
Assignee:
Wooree LST Co. Ltd.
Inventors:
Do-Yeol Ahn, Seoung-Hwan Park, Jung-Tae Jang
Abstract: The present invention relates to a nitride semiconductor light emitting device using a hybrid buffer layer and a method for fabricating the same which can minimize the lattice mismatch between a buffer layer and a nitride semiconductor. The method for fabricating the nitride semiconductor light emitting device using the hybrid buffer layer includes a first step of forming an AlxGa1-xN(0?x<1) layer on a substrate, a second step of forming a three-dimensional crystal seed layer made of a material included in a general formula of AlxGa1-xN(0?x<1) and AlOyNz on the substrate by recrystallizing the substrate with the AlxGa1-xN(0?x<1) layer thereon, and a third step of forming an AlN nanostructure by annealing the substrate subjected to the second step at NH3 gas atmosphere, thus forming a hybrid buffer layer composed of the three-dimensional crystal seed layer and the AlN nanostructure on the substrate.
Abstract: The present disclosure relates to a semiconductor light-emitting device which includes: a light-emitting layer composed of an active layer and of barrier layers formed as superlattice layers and disposed on and under the active layer to relieve stresses applied to the active layer and reduce the sum of electric fields generated in the active layer by the spontaneous polarization and the piezo; an N-type contact layer injecting electrons into the light-emitting layer; and a P-type contact layer disposed opposite to the N-type contact layer with respect to the light-emitting layer and injecting holes into the light-emitting layer, wherein the active layer contains InGaN, and the barrier layers are formed by alternately stacking of an AlGaN thin film and an InGaN thin film.
Type:
Application
Filed:
August 12, 2009
Publication date:
June 16, 2011
Applicant:
Wooree LST CO., LTD
Inventors:
Jung Tae Jang, Bun Hei Koo, Do Yeol Ahn, Seoung Hwan Park