Patents Assigned to Wright Therapy Products, Inc.
-
Patent number: 9889063Abstract: Methods and systems are disclosed for determining patient compliance for using a compression therapy device. The systems may include a compression therapy sleeve and a controller having a non-transitory memory device. During a therapy session, the controller may record in the memory device operational therapy data obtained from sensors associated with the controller and/or sleeve. The controller may calculate a compliance metric based in part on the therapy data. The controller may then communicate the data or metric to one or more recipients. The methods may include allowing the patient to transfer a removable memory device from the controller to a personal computer, and uploading the therapy data or metric stored on it to a recipient website. Alternative methods may include the patient receiving the metric from the controller at the end of the therapy session, and then providing the metric to a recipient by phone.Type: GrantFiled: June 11, 2013Date of Patent: February 13, 2018Assignee: WRIGHT THERAPY PRODUCTS, INC.Inventors: Carol L. Wright, Gregory Yurko
-
Patent number: 9737238Abstract: Methods are disclosed for measuring the size of body parts treated by a compression therapy device. Either the volume or circumference of the body part may be measured. The methods may include evacuating an inflatable compression sleeve to a known pressure, inserting the body part into the compression sleeve, inflating the sleeve to a pre-set condition, and then measuring one or more inflation related parameters. The pre-set conditions may include a pre-determined pressure, volume, or size of the inflatable cells comprising the sleeve. The inflation related parameters may include the time to fill the cell to a pre-set pressure, the pressure attained after a pre-set time of inflation, or the measured volume of a cell after a pre-set amount of air is introduced into it. The methods may also include deflating the cells from the known inflation state to a second inflation state and measuring similar parameters.Type: GrantFiled: August 14, 2013Date of Patent: August 22, 2017Assignee: Wright Therapy Products, Inc.Inventors: Carol L. Wright, Gregory Yurko
-
Patent number: 9295605Abstract: Systems for auto-calibrating a pneumatic compression system may include one or more manifolds from an inflation fluid source and one or more individually inflatable cells. One or more pressure sensors may be associated with the one or more manifolds and/or each of the individually inflatable cells. Each of the pressure sensors may provide either dynamic or static pressure data to a controller. A method for auto-calibrating the compression system may include introducing a portion of inflation fluid into a cell while measuring a dynamic cell pressure, stopping the introduction of fluid, measuring a static cell pressure, and comparing, by the computing device, the dynamic cell pressure and the static cell pressure. sure. The comparison between dynamic and static cell pressures may be used to calculate a dynamic target cell pressure equivalent to a desired static target cell pressure.Type: GrantFiled: December 2, 2013Date of Patent: March 29, 2016Assignee: Wright Therapy Products, Inc.Inventors: Gregory Yurko, Calvin Eggers
-
Patent number: 9114053Abstract: Pneumatic compression devices and methods for using the same are disclosed. A pneumatic compression device may include a compression pump, a fill/exhaust valve, a transducer, a plurality of cell valves, and a controller. The compression pump may output a pressurized fluid via an output. The fill/exhaust valve may connect one or more cell valves to the compression pump when in an open state and to the atmosphere when in a closed state. The transducer may sense a pressure level. Each cell valve may correspond to a cell and may connect the fill/exhaust valve to the corresponding cell when in an open state. The controller may determine a state (either open or closed) for each of the fill/exhaust valve and the plurality of cell valves based on at least the pressure level sensed by the transducer.Type: GrantFiled: May 9, 2012Date of Patent: August 25, 2015Assignee: Wright Therapy Products, Inc.Inventors: Carol Lynn Wright, James Gasbarro
-
Publication number: 20150150746Abstract: Systems for auto-calibrating a pneumatic compression system may include one or more manifolds from an inflation fluid source and one or more individually inflatable cells. One or more pressure sensors may be associated with the one or more manifolds and/or each of the individually inflatable cells. Each of the pressure sensors may provide either dynamic or static pressure data to a controller. A method for auto-calibrating the compression system may include introducing a portion of inflation fluid into a cell while measuring a dynamic cell pressure, stopping the introduction of fluid, measuring a static cell pressure, and comparing, by the computing device, the dynamic cell pressure and the static cell pressure. The comparison between dynamic and static cell pressures may be used to calculate a dynamic target cell pressure equivalent to a desired static target cell pressure.Type: ApplicationFiled: December 2, 2013Publication date: June 4, 2015Applicant: Wright Therapy Products, Inc.Inventors: Gregory Yurko, Calvin Eggers
-
Publication number: 20140052028Abstract: Methods are disclosed for measuring the size of body parts treated by a compression therapy device. Either the volume or circumference of the body part may be measured. The methods may include evacuating an inflatable compression sleeve to a known pressure, inserting the body part into the compression sleeve, inflating the sleeve to a pre-set condition, and then measuring one or more inflation related parameters. The pre-set conditions may include a pre-determined pressure, volume, or size of the inflatable cells comprising the sleeve. The inflation related parameters may include the time to fill the cell to a pre-set pressure, the pressure attained after a pre-set time of inflation, or the measured volume of a cell after a pre-set amount of air is introduced into it. The methods may also include deflating the cells from the known inflation state to a second inflation state and measuring similar parameters.Type: ApplicationFiled: August 14, 2013Publication date: February 20, 2014Applicant: Wright Therapy Products, Inc.Inventors: Carol L. Wright, Gregory Yurko
-
Publication number: 20130237889Abstract: Pneumatic and therapeutic compression systems are disclosed including treatment protocols that may be used with such systems. A pneumatic compression system may include a source and sink of a pressurizing fluid. The pressurizing fluid may be sourced to a number of valves, each valve controllable by a control device including a computing device. The computing device may control each valve separately to allow any one or more of the valves to connect to the fluid source or the fluid sink. The computing device may include one or more therapeutic protocols that may direct one, two, or more valves to switch between fluid sourcing and fluid sinking, substantially simultaneously or in a sequence. A therapeutic compression system may include the pneumatic system in fluid communication with an inflation sleeve composed of multiple cells. Each cell may be inflated or deflated by a valve according to the therapeutic protocol.Type: ApplicationFiled: March 12, 2013Publication date: September 12, 2013Applicant: Wright Therapy Products, Inc.Inventors: Carol L. Wright, Gregory Yurko
-
Publication number: 20120219432Abstract: Pneumatic compression devices and methods for using the same are disclosed. A pneumatic compression device may include a compression pump, a fill/exhaust valve, a transducer, a plurality of cell valves, and a controller. The compression pump may output a pressurized fluid via an output. The fill/exhaust valve may connect one or more cell valves to the compression pump when in an open state and to the atmosphere when in a closed state. The transducer may sense a pressure level. Each cell valve may correspond to a cell and may connect the fill/exhaust valve to the corresponding cell when in an open state. The controller may determine a state (either open or closed) for each of the fill/exhaust valve and the plurality of cell valves based on at least the pressure level sensed by the transducer.Type: ApplicationFiled: May 9, 2012Publication date: August 30, 2012Applicant: WRIGHT THERAPY PRODUCTS, INC.Inventors: Carol Lynn Wright, James Gasbarro
-
Patent number: 8202236Abstract: A method of measuring pressure for a cell in a pneumatic compression device may include performing an inflate/exhaust cycle including, for one or more cells of a plurality of cells in a pneumatic compression device, inflating a cell to a target pressure, wherein the target pressure is based on at least a desired pressure, measuring a pressure of the cell, determining an overpressure value associated with the cell based on at least the measured pressure, determining a subsequent target pressure associated with the cell based on at least the measured pressure and the overpressure value, deflating the cell, and inflating the cell until the subsequent target pressure is achieved.Type: GrantFiled: December 7, 2007Date of Patent: June 19, 2012Assignee: Wright Therapy Products, Inc.Inventor: James Gasbarro
-
Patent number: 8182437Abstract: Pneumatic compression devices and methods for using the same are disclosed. A pneumatic compression device may include a compression pump, a fill/exhaust valve, a transducer, a plurality of cell valves, and a controller. The compression pump may output a pressurized fluid via an output. The fill/exhaust valve may connect one or more cell valves to the compression pump when in an open state and to the atmosphere when in a closed state. The transducer may sense a pressure level. Each cell valve may correspond to a cell and may connect the fill/exhaust valve to the corresponding cell when in an open state. The controller may determine a state (either open or closed) for each of the fill/exhaust valve and the plurality of cell valves based on at least the pressure level sensed by the transducer.Type: GrantFiled: May 8, 2007Date of Patent: May 22, 2012Assignee: Wright Therapy Products, Inc.Inventors: James Gasbarro, Carol Lynn Wright