Abstract: The fuel cell system in accordance with the invention is used for the generation of current and heat from liquid and gaseous fuels. Said system comprises a reformer and a fuel cell stack having an operating temperature above 120° C. and providing exhaust heat that is utilized for the generation of steam in the evaporation channels (2). The evaporation channels (2) are arranged so as to be in direct thermal contact with the stack (1) that is to be cooled. A pressure-maintaining device at the outlet of the evaporation channels (2) is disposed to adjust the pressure in said channels to a value that results in the desired stack temperature.
Abstract: The fixed-bed gasifier and method in accordance with the invention operates with a solid material batch that is perfused by air and/or steam in opposing direction. Compared with the resultant pyrolysis coke batch, the actual pyrolysis zone is thin enough so as to result in a material dwell time in the pyrolysis zone of only a few minutes, while the dwell time of the pyrolysis coke in the pyrolysis coke layer may last up to several hours. The pyrolysis occurs in an allothermic manner. High-energy low-dust and low-tar gas is formed. The process control can be automated in a reliable manner. The exhaust of reaction gases and pyrolysis gases occurs through the heating chamber, whereby the last tar components are eliminated.
Abstract: The novel compact steam reformer (1) combines in one device the steam reformation of natural gas or other fuel, including subsequent cleaning of CO. Controlled catalytic CO cleaning is achieved by careful temperature control at the follow-up reactor (37, 39, 39a). Temperature control is made possible by means of pressure-controlled operation of the evaporator (24).
Abstract: A reformer which enables rapid load changes of up to 100% within a few seconds and is intended to produce hydrogen from hydrocarbons by steam reformation, comprises an evaporator cooler for cooling the reformate and for generating steam. The evaporator cooler is disposed in the reformer, on the end of its reaction vessel. It keeps the applicable end of the tube cool and uses the waste heat of the reformate for generating steam. This makes fast load changes possible, because an increase in the introduction of water immediately causes an increase in the reformate produced and thus an increase in the heat output.