Patents Assigned to WS Warmeprozesstechnik GmbH
  • Publication number: 20240060638
    Abstract: The invention relates to a device (2) and a method for supplying combustion air and for recirculating exhaust gas for a burner (1) comprising a combustion chamber (10) and to a burner (1) comprising a device (2) for supplying combustion air and for recirculating exhaust gas. Multiple drive nozzles (21) distributed about a central axis (A) are used to supply combustion air to a mixing chamber (22) arranged downstream of the drive nozzles (21) by suctioning exhaust gases out of the combustion chamber (10); the combustion air exiting the drive nozzles (21) is mixed with exhaust gases in the mixing chamber (22) in order to form a combustion air/exhaust gas mixture, said exhaust gases flowing out of the combustion chamber (10) and being backflushed by means of the drive nozzles (21); and the combustion air/exhaust gas mixture is supplied to a reaction zone downstream of the mixing chamber (22).
    Type: Application
    Filed: November 17, 2021
    Publication date: February 22, 2024
    Applicant: WS - Wärmeprozesstechnik GmbH
    Inventors: Joachim A. Wünning, Joachim G. Wünning
  • Publication number: 20230175783
    Abstract: The invention relates to a flat tube heat exchanger, in particular to a high-temperature flat tube heat exchanger for gaseous media, comprising a closed housing (5) having a tube bundle space (50) and a tube bundle, arranged in the tube bundle space (50) of the housing (5), comprising multiple flat tubes (2), there being arranged, in the flat tubes (2) and in the tube bundle space (50) between the flat tubes (2), corrugated strips (3, 6) having peaks (30, 60) and troughs (31, 61) extending in the longitudinal direction of the flat tubes (2), wherein the peaks (30, 60) and troughs (31, 61) respectively bear internally and externally against flat sides (200) of the flat tubes (2), and wherein there is provided a device for externally applying a surface pressure to the housing (5), at least in the region of the tube bundle space (50), this pressure being higher than a pressure (p1, p2) of the media guided in the flat tubes (2) or around the flat tubes (2).
    Type: Application
    Filed: March 16, 2021
    Publication date: June 8, 2023
    Applicant: WS - Wärmeprozesstechnik GmbH
    Inventor: Joachim A. Wünning
  • Patent number: 11236278
    Abstract: A process and apparatus for gasification of biomass. Biogenic residue may be supplied to a heating zone to dry the biomass and allow the volatile constituents to escape to generate a pyrolysis gas. The pyrolysis gas is supplied to an oxidation zone and substoichiometrically oxidized to generate a crude gas. The carbonaceous residue generated in the heating zone and the crude gas is partially gasified in a gasification zone. The gasification forms activated carbon and a hot process gas. The activated carbon and the hot process gas are conjointly cooled. The adsorption process during the conjoined cooling has the result that tar from the hot process gas is absorbed on the activated carbon in the cooling zone. A pure gas which is substantially tar-free is obtained. The tar-enriched activated carbon may be at least partly burned for heating the heating zone and/or the gasification zone.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 1, 2022
    Assignee: WS-Wärmeprozesstechnik GmbH
    Inventors: Joachim G. Wünning, Joachim A. Wünning
  • Patent number: 10914528
    Abstract: This flat tube heat exchanger encompasses a closed housing, in which two tube sheets and a tube bundle, which is arranged between the tube sheets and which is supported by the tube sheets is arranged. The tube bundle comprises at least some flat tubes, which extend in longitudinal direction of the tube bundle. At their ends, the flat tubes are round and are flat in a central section. The ends of the flat tubes, which have a round cross section, can be circular or can encompass a different round shape.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: February 9, 2021
    Assignee: WS-WARMEPROZESSTECHNIK GMBH
    Inventor: Joachim A. Wunning
  • Patent number: 10830432
    Abstract: To heat a furnace chamber (16) indirectly using radiant tubes (11) to (14), heating energy is transferred through the radiant tube wall into the furnace chamber (16). During steady-state operation, the temperature in the radiant tube (11) to (14) and on its surface is higher than the furnace, depending on the specific heat output of the radiant tube (11) to (14). At a furnace temperature of 770° C. and a heat output of 50 kW/m2, the radiant tube has a temperature of 900° C. The radiant tube (11) to (14) can thus operate continuously with flameless oxidation at this output, even though the temperature in the furnace is only 100° C. However, if the radiant tube (11) to (14) has cooled to the furnace temperature of 770° C. during a break in burning, deflagration is avoided when the associated burner is ignited by initially operating said burner with a flame for a few seconds.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: November 10, 2020
    Assignee: WS-Wärmeprozesstechnik GmbH
    Inventors: Joachim G. Wünning, Joachim A. Wünning
  • Patent number: 10578299
    Abstract: A burner system includes at least one radiant heating tube (22) and a first regenerator (48) disposed at a first end (24) of the tube. A second regenerator (50) is disposed at a second end (26) of the radiant heating tube (22). The first regenerator (48) and the second regenerator (50) are connected to a valve system (54) having first and second operating states for alternately supplying the radiant heating tube (22) with combustion air via one regenerator (48, 50) and for discharging exhaust gases via the other regenerator (48, 50). At least one inner tube (34) is disposed inside and extending along the radiant heating tube (22) at least in sections. The inner tube (34) is connected to a fuel supply line (76) and has outlet openings (46) provided along the longitudinal extension of the inner tube (34).
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: March 3, 2020
    Assignee: WS-Wärmeprozesstechnik GmbH
    Inventors: Joachim Wünning, Joachim Wünning
  • Patent number: 10161632
    Abstract: To improve the efficiency of recuperator burners, preferably to over 80%, a recuperator burner (10) is equipped with an auxiliary heat exchanger (26) which surrounds the recuperator (22), wherein both the recuperator and the auxiliary heat exchanger are preferably formed as purely counterdirectional-flow heat exchangers, wherein the auxiliary heat exchanger (26) has the air supplied to it on the side facing toward the furnace wall (11). The housing (15) around the auxiliary heat exchanger (26) can be cooled with cool air from the inside. In one configuration, the air is initially conducted to a flange cooler (45) to protect the region of the flange (16) against the exhaust-gas temperature. For example, the ceramic recuperator pipe (26) is resiliently pressed, and sealed off, against an outlet-side surface (35) of the auxiliary heat exchanger (26), which preferably has gap-like air ducts (39) formed in flattened pipes (40).
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: December 25, 2018
    Assignee: WS Wärmeprozesstechnik GmbH
    Inventors: Joachim G. Wünning, Joachim A. Wünning
  • Publication number: 20170082283
    Abstract: A device for the flameless oxidation of fuel includes a flameless oxidation burner, a first conduit to convey a fluid fuel phase to a first outlet and a direct primary jet including the fluid fuel phase outwardly therefrom. A second conduit is provided to convey a jacketing gas to a second outlet. The second conduit is disposed surrounding the first conduit so as to direct a jacketing jet of the jacketing gas outwardly therefrom surrounding the primary jet.
    Type: Application
    Filed: May 11, 2015
    Publication date: March 23, 2017
    Applicants: DOOSAN BABCOCK LIMITED, WS WARMEPROZESSTECHNIK GMBH
    Inventors: Angus DUNCAN, Gerry HESSELMANN, Joachim G WÜNNING
  • Patent number: 9603199
    Abstract: A radiant heat tube (5) comprises a tube body having a center section (6) and at least one recirculating section (7, 8) arranged next to the center section, said recirculating section forming a loop (9, 10) with said center section. A pivot joint bearing (23) is arranged on one end (12) of the radiant heat tube, while a sliding bearing (15) is arranged on the other end (11) of the radiant heat tube, said sliding bearing (15) being arranged opposite said pivot joint bearing (23). A burner (14) is disposed to heat the radiant heat tube (5).
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 21, 2017
    Assignee: WS WÄRMEPROZESSTECHNIK GMBH
    Inventors: Joachim A. Wünning, Joachim G. Wünning
  • Patent number: 8622736
    Abstract: In a highly efficient recuperator burner, which comprises at least one combustion chamber for warm-up operation and is otherwise set up for FLOX® operation, and a recuperator for preheating combustion air by means of thermal exhaust gas energy in a counter-current heat exchange mode via heat exchanger pipes, each heat exchanger pipe has, in a heat exchange section thereof, a flattened gap cross-section and, at its end facing a volume to be heated, a nozzle cross-section, which differs from the flattened gap cross-section of the heat exchanger pipe.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: January 7, 2014
    Assignee: WS-Wärmeprozesstechnik GmbH
    Inventors: Joachim G. Wünning, Joachim A. Wünning
  • Patent number: 8475161
    Abstract: In a high efficiency regenerator burner for heating spaces, the exhaust gas generated by the burner is provided which is conducted alternately through different regenerator cartridges and a partial stream of the exhaust gas is conducted under the control of an orifice plate through a bypass space in which the regenerator cartridges are disposed. A control structure is disposed in a burner head for controlling the exhaust gas bypass flow volume and also to control the main exhaust gas flow as well as the combustion air flow through the regenerator cartridges.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: July 2, 2013
    Assignee: WS-Wärmeprozesstechnik GmbH
    Inventors: Joachim A. Wünning, Joachim G. Wünning
  • Patent number: 7062917
    Abstract: A combustion chamber (5) for a gas turbine is adapted for flameless oxidation of fuels. This circulation flow has an internal space (9) in which a large-volume circulation flow is established. To this end, the combustion chamber supplies a hot exhaust stream to the introduced air, the mass flow rate of which exceeds the fresh air stream. The fresh air and the fuel are fed to the combustion chamber in the same direction, roughly parallel to the wall.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: June 20, 2006
    Assignee: WS Warmeprozesstechnik GmbH
    Inventors: Joachim G. Wunning, Joachim A. Wunning
  • Patent number: 7029271
    Abstract: A device including a burner (6) for directing a fuel/air mixture into a reaction chamber (2) for flameless oxidation of fuels. The burner (6) discharges a fuel/air jet transversely to a longitudinal axis (A) of the burner and an exhaust gas channel (17) is arranged in or on the burner concentric or parallel to the burner longitudinal axis (A). An outlet direction (R) of the fuel/air jets from the burner and the direction (A) of the exhaust gas channel cross each other. Hence, the burner introduces fuel parallel or at an angle to the wall into the furnace chamber where the burner is mounted for flameless oxidation of the fuel.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: April 18, 2006
    Assignee: WS Warmeprozesstechnik GmbH
    Inventors: Joachim G. Wunning, Joachim A. Wünning
  • Publication number: 20040091830
    Abstract: A device including a burner (6) for directing a fuel/air mixture into a reaction chamber (2) for flameless oxidation of fuels has a reaction chamber (2), which is supplied with a fuel air mixture by a burner (6). The burner (6) discharges the a fuel air fuel/air jet transversely to it's a longitudinal axis (A) of the burner and an. An exhaust gas channel (17) is arranged in or on the burner concentric or parallel to the burner longitudinal axis (A). The An outlet direction (R) of the fuel/air jets from the burner and the direction (A) of the exhaust gas channel cross each other. This Hence, produces the burners, which fuel introduces the fuel parallel or at an angle to the furnace wall into the furnace chamber in where the burner is mounted and are designed for flameless oxidation of the fuel.
    Type: Application
    Filed: April 17, 2003
    Publication date: May 13, 2004
    Applicant: WS Warmeprozesstechnik GmbH
    Inventors: Joachim G. Wunning, Joachim A. Wunning
  • Patent number: 5833450
    Abstract: A ceramic recuperator (18) for a recuperator burner (1) is provided, in its heat exchanger region, with a plurality of radially inward- and outward-extending teeth. On the otherwise hollow-cylindrical recuperator (18), the teeth (19) are arranged in groups, e.g., in rings; the teeth of one ring are each offset from the teeth of an adjacent ring. Alternatively, it is possible to arrange the teeth on a single- or multi-start helical line. The recuperator can be produced economically by the slip-casting method.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: November 10, 1998
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning
  • Patent number: 5762489
    Abstract: To sealingly retain a radiant heat exchange tube extending through an opening (5) in a wall (3) of a furnace, and to isolate the atmosphere within the furnace space (2) from outside ambient space, a thin-wall sleeve (25) has a first portion (40) shrinkfitted around the radiant heat exchange tube (7) which, for high temperature resistance, is made of a ceramic, preferably silicon carbide. A second portion (42, 44, 46) of the sleeve (25) which conically expands, is secured to a flange element (23), for example by welding, which, in turn, is secured for examples by screws, to a flange structure (8) on the wall (3) of the furnace. The flange element (23) has an inner diameter which is greater than the outer diameter of the tube (7). The sleeve (25) is preferably made of iron-nickel and has a wall thickness which is about 1/10 of the wall thickness of the ceramic tube (7).
    Type: Grant
    Filed: February 12, 1996
    Date of Patent: June 9, 1998
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning
  • Patent number: 5326255
    Abstract: A burner suitable for heating a furnace chamber of an industrial furnace which is equipped with a recuperative preheater for combustion air has a combustion chamber at one end and a feed-through cap at the other end which is accessible outside of a furnace in which the burner is installed. The tubular recuperative preheater is of the coaxial countercurrent flow configuration extending between the combustion chamber and an annular outflow collector cap. A coaxial fuel pipe is centered in the burner extending to the combustion chamber. Overheating of the burner cap is prevented by means of a spacer sleeve of small heat conductivity interposed between the preheater and the burner cap. This permits the valves to be seated in the burner cap without risk of thermal damage. For protection of personnel against contact with hot surfaces, a perforated metal shield is provided between the burner cap and the outflow cap of the recuperator, essentially covering all the portions of the burner outside a furnace wall.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: July 5, 1994
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning
  • Patent number: 4878839
    Abstract: To provide for energy-efficient non-polluting heat treatment of workpieces (W) which, during heat treatment, emit oxidizable or combustible substances, hot gases are generated in a hot gas generating chamber (2) by a jet burner (5) emitting a flame jet. The hot gas generating chamber (2) is connected through a hot gas outlet (7) with a processing chamber retaining the workpieces, and a recirculating inlet (8) to receive the gases from the processing chamber, after they have been contaminated or received polluting combustible components. The hot gas generating chamber is, additionally, in communication through a duct or gap (4) with an after-burner chamber (3).
    Type: Grant
    Filed: August 22, 1988
    Date of Patent: November 7, 1989
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning
  • Patent number: 4877396
    Abstract: The heat recuperator of a burner for an industrial furnace makes use of a substantially cylindrical body of ceramic produced by extrusion in which there are two interleaved sets of parallel channels, one set for the flow of combustion product gases out of the furnace and another set for the supply of air to be preheated in the recuperator and delivered to a combustion chamber coaxial with the recuperator and possibly located at least in part in the end portion of the cavity surrounded by the cylindrical ceramic body. The combustion product gases and the air being preheated flow in countercurrent and the disposition of the sets of channels facilitates heat transfer. The combustion chamber is constituted entirely of ceramic parts. A jet nozzle is provided on the outlet side of the combustion chamber and a fuel lance passing through the middle of the recuperator body and into the combustion chamber may also serve to adjust the jet nozzle by means of a valve body around its tip.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: October 31, 1989
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning
  • Patent number: 4586894
    Abstract: A burner for gaseous or liquid fuel for heating furnaces includes a ceramic combustion chamber (20) for incomplete combustion of the fuel with primary air from which hot gases exit at high velocity through a constricted outlet (24). The combustion chamber is surrounded by a chamber (42) for the preheated remainder air necessary to complete combustion. Out of this chamber high velocity jets of air issue through nozzle openings encircling the combustion chamber outlet. Energy is saved and simple construction maintained by providing a tubular heat recuperator (4, 7, 9) rearwardly of the combustion chamber in which a cylindrical wall of temperature resistant steel passes to separate the recuperator into two annular chambers (10,11) and extends forward over a large part of the axial length of the combustion chamber so as to form an outer boundary of the remainder air chamber.
    Type: Grant
    Filed: June 12, 1985
    Date of Patent: May 6, 1986
    Assignee: WS Warmeprozesstechnik GmbH
    Inventor: Joachim Wunning