Patents Assigned to X Development LLC
  • Patent number: 9939651
    Abstract: An example beam splitting apparatus is assembled from multiple prisms that are assembled together along respective mating surfaces to form a single monolithic optical device. The beam splitting apparatus includes optical features, such as dichroic and reflective surfaces, that define optical paths for light that enters the beam splitting apparatus. The optical features allow photons in the light to be directed along different optical paths based on their wavelengths. The optical features in the beam splitting apparatus are provided by coatings, films, and/or surface treatments applied to any of the faces of the prisms. In particular, coatings, films, and/or surface treatments are applied to the mating surfaces of the prisms so that the optical features are internal to the assembled monolithic optical device. The beam splitting apparatus may be implemented in a communication terminal that exchanges data modulated light according to frequency-division duplex communications.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 10, 2018
    Assignee: X Development LLC
    Inventors: Robert Todd Belt, Nam-hyong Kim, Baris Ibrahim Erkmen, Edward Allen Keyes
  • Patent number: 9934189
    Abstract: A method operable by a computing device is provided. The method may include receiving a request for a given task to be performed by a modular reconfigurable workcell. The method may also include determining one or more peripherals required to perform the given task. The method may also include determining an optimal placement of the one or more peripherals based on the given task, wherein the one or more peripherals are coupled to the workcell in a fixed geometric configuration based on the determined optimal placement. The method may also include determining a first calibration of the one or more peripherals based on the orientation of the one or more peripherals relative to the workcell, and determining a second calibration of the one or more peripherals based on the optimal placement of the one or more peripherals with respect to each other.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: April 3, 2018
    Assignee: X Development LLC
    Inventors: Advait Jain, Aaron Edsinger, Anthony Jules, Stefan Nusser, James Nicholas Vines
  • Patent number: 9932830
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 3, 2018
    Assignee: X Development LLC
    Inventor: Robert B. Laughlin
  • Patent number: 9925718
    Abstract: An assembly for use during manufacture of a balloon envelope that includes a table having first and second levels, an indicator disposed on the first level and a sealing component. The first level is arranged to receive a first sheet portion of material. The indicator is arranged along a lengthwise axis of the table to indicate a position for attaching a tendon to the first sheet portion. The second level is arranged to receive assembled gore portions of the envelope comprising the first sheet portion, the tendon and a second sheet portion of material. The sealing component is configured to move along the table and to apply a heat seal to bond together the first and second sheet portions disposed thereon in order to form at least part of a gore portion of the envelope, such that the tendon is arranged proximate to a centerline of the gore.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: Kevin Roach, Jeffrey Neri, Daniel Henry Fourie
  • Patent number: 9927441
    Abstract: A method for determining concentrations of target proteins in a protein sample can involve: (i) contacting the protein sample with an aptamer library to form a mixture; (ii) allowing the aptamers in the aptamer library to bind to the target proteins in the protein sample; (iii) removing the aptamers that have not been bound to a target protein in the mixture; and (iv) measuring the concentration each aptamer bound to proteins in the mixture. The concentration of a particular protein in the protein sample can be derived from the measurements of the concentrations of the aptamer or aptamers bound to that particular protein in the mixture.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: Jason Thompson, Jonathan Ross
  • Patent number: 9928487
    Abstract: Methods and systems for proactively preventing hazardous or other situations in a robot-cloud interaction are provided. An example method includes receiving information associated with task logs for a plurality of robotic devices. The task logs may include information associated with tasks performed by the plurality of robotic devices. The method may also include a computing system determining information associated with hazardous situations based on the information associated with the task logs. For example, the hazardous situations may comprise situations associated with failures of one or more components of the plurality of robotic devices. According to the method, information associated with a contextual situation of a first robotic device may be determined, and when the information associated with the contextual situation is consistent with information associated with the one or more hazardous situations, an alert indicating a potential failure of the first robotic device may be provided.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: James J. Kuffner, Jr., Ryan Hickman
  • Patent number: 9927815
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Patent number: 9925662
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for training a path of a robot by physically moving the robot, wherein the particular trained path and/or particular robot component movements to achieve the trained path are dependent on which of a plurality of available user interface inputs are selected for the training. The trained path defines a path to be traversed by a reference point of the robot, such as a path to be traversed by a reference point of an end effector of the robot. The particular robot component movements to achieve the trained path include, for example, the orientations of various robot components at each of a plurality of positions along the path, the velocity of various components at each of a plurality of positions along the path, etc.
    Type: Grant
    Filed: June 28, 2015
    Date of Patent: March 27, 2018
    Assignee: X DEVELOPMENT LLC
    Inventors: Anthony Sean Jules, Johan Ulrich Lewin Jessen
  • Patent number: 9925669
    Abstract: An example method includes receiving position data indicative of position of a demonstration tool. Based on the received position data, the method further includes determining a motion path of the demonstration tool, wherein the motion path comprises a sequence of positions of the demonstration tool. The method additionally includes determining a replication control path for a robotic device, where the replication control path includes one or more robot movements that cause the robotic device to move a robot tool through a motion path that corresponds to the motion path of the demonstration tool. The method also includes providing for display of a visual simulation of the one or more robot movements within the replication control path.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventor: Jeffrey Linnell
  • Patent number: 9919416
    Abstract: Example implementations may relate to a robotic system that provides feedback. The robotic system is configured to receive information related to a path in an environment of the robotic system. The robotic system is also configured to initiate a recording process for storing data related to motion of a component in the environment. The robotic system is additionally configured to detect, during the recording process, movement of the component along the path in the environment, where the movement results from application of an external force to the robotic system. The robotic system is further configured to determine, during the recording process, deviation of the movement away from the path by at least a threshold amount and responsively provide feedback including one or more of (i) resisting the deviation of the movement away from the path and (ii) guiding the at least one component back towards the path.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventors: Jeffrey Thomas Bingham, Rob Wilson
  • Patent number: 9919424
    Abstract: Example methods and systems are disclosed for performing automated tasks with a robot system. In one example, a robot system includes a robotic arm and an end-effector coupled to the robotic arm. The end-effector is actuatable among more than two states of actuation. The robot system also includes an analog control switch located on the end-effector. The analog control switch is actuatable among more than two switch positions. The analog control switch is configured such that actuation of the analog control switch among the more than two switch positions causes a corresponding actuation of the end-effector among the more than two states of actuation.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventor: Roman Devengenzo
  • Patent number: 9923252
    Abstract: An apparatus including a battery pack comprising a plurality of individual batteries arranged around a battery cavity such that each individual battery is in thermal contact with at least one neighboring individual battery. A variable-conductance heat pipe (VCHP) having an evaporator end and a condenser end, is positioned so that at least part of the evaporator end being positioned in the battery cavity and in thermal contact with each of the plurality of individual batteries. The apparatus includes a thermally insulating cover having an inside and an outside, wherein the battery pack and the part of the VCHP evaporator end in the battery cavity are positioned inside the thermally insulating cover and at least part of the condenser end of the VCHP is outside the thermally insulating cover, and wherein the VCHP is substantially the only thermal path between the battery pack and the outside. Other implementations are disclosed and claimed.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventor: Matthew A. Nubbe
  • Patent number: 9922364
    Abstract: Methods are described herein related to enabling users to purchase a product or service by providing a voice request and/or an image. An example method may involve: (a) receiving, by a hybrid response system (“HRS”), a first speech-segment message that comprises a speech segment and is associated with a user-account, (b) the HRS determining that the speech segment indicates a purchase request, (c) the HRS determining a target product/service based on at least the purchase request, (d) the HRS determining a confidence level associated with a purchase of the target product/service, (e) if the confidence level is greater than or equal to a threshold level, then the HRS sending a purchase order, via the associated user-account, for the target product or service, otherwise, the HRS sending the purchase request and the target product/service to at least one guide computing system to facilitate a response to the purchase request.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventors: Charles Chen, Rakesh Yadav
  • Patent number: 9919422
    Abstract: Example implementations may relate to methods and systems to prevent damage in robots. In particular, a robotic system may include a particular component that is moveable along one or more degrees of freedom (DOFs) each providing a respective range of motion (ROM) of the particular component. This robotic system may detect movement of the particular component along a particular DOF and may responsively determine mechanical feedback characteristics that define, for each of one or more positions of the particular component along the respective ROM provided by the particular DOF, a force to be provided by at least one actuator coupled to the particular component. So during the movement, the robotic system may determine a particular position of the particular component along the respective ROM and, based on the particular position, the robotic system may direct an actuator to provide a force in accordance with the determined mechanical feedback characteristics.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventor: Adam Edward Horton
  • Patent number: 9919427
    Abstract: An example method includes receiving, from a sensor, an image of an environment, where the environment includes a robotic device. The method also includes determining, based on the received image of the environment, a pose of the robotic device relative to the sensor. The method further includes determining, based on the pose of the robotic device relative to the sensor, respective positions of a plurality of trajectory points for the robotic device relative to the sensor. The method additionally includes providing for display of the image of the environment and an overlaid plurality of virtual trajectory points corresponding to the plurality of trajectory points, where the plurality of virtual trajectory points are positioned in the image based on the determined respective positions of the plurality of trajectory points for the robotic device relative to the sensor.
    Type: Grant
    Filed: July 25, 2015
    Date of Patent: March 20, 2018
    Assignee: X Development LLC
    Inventor: Matthieu Guilbert
  • Patent number: 9913429
    Abstract: The locations of flowers on a plant, rather than the locations of agricultural products produced from such flowers, are used to facilitate the performance of harvesting and other agricultural operations in robotic agricultural applications. In some implementations, the identified location of a fruit-producing flower may be used by a robotic device to apply an indicator tag to a flowering plant proximate the flower for later identification when performing various types of directed and automated agricultural operations. In other implementations, the identified location of a fruit-producing flower may be used by a robotic device to anchor a stem of a flowering plant to a predetermined location such that the location of the flower, and of any fruit(s) later produced by such flower, are controlled and/or known when performing subsequent agricultural operations.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 13, 2018
    Assignee: X DEVELOPMENT LLC
    Inventors: Mark Adrian Stubbs, Kevin James Fleming McCloskey
  • Patent number: 9914644
    Abstract: A method including increasing modifying a volume of seawater that holds an amount of dissolved inorganic carbon; acidifying the amount of seawater; and collecting an amount of carbon dioxide from the acidified seawater. A system including an electrodialysis unit including an acidified solution compartment, a basified solution compartment, a membrane and an acidified solution output compartment; a vessel coupled to an inlet of the acidified solution compartment and operable to contain a modified volume of seawater therein; and a desorption unit coupled to the acidified compartment output, the desorption unit operable to receive carbon dioxide gas from a solution from the acidified output compartment.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: March 13, 2018
    Assignee: X Development LLC
    Inventor: Matthew Eisaman
  • Patent number: 9914521
    Abstract: Aspects of the disclosure relate to techniques for launching high-altitude balloons. In one aspect, a balloon launching system is provided. The balloon has a balloon envelope, a payload attached to the balloon envelope and a launching projection. The launching system includes a releasable restraint attached to the balloon between an apex and bottom of the balloon envelope. The releasable restraint is arranged to temporarily hold the balloon envelope. The launching system also includes a payload positioning assembly. The payload positioning assembly is configured to position the payload during launch of the balloon and includes a member configured to attach to the launching projection. When attached, the member is also configured to maintain the position of the payload relative to the balloon while the releasable restraint is temporarily holding the balloon envelope.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 13, 2018
    Assignee: X Development LLC
    Inventors: Michael Hall-Snyder, Sandeep Kumar Giri, Shane Washburn, Joseph Charles Benedetto, Keegan Gartner
  • Patent number: 9917633
    Abstract: A balloon may include an optical-communication component, which may have a pointing axis. A pointing mechanism could be configured to adjust the pointing axis. The optical-communication component could be operable to communicate with a correspondent balloon via a free-space optical link. For example, the optical-communication component could include an optical receiver, transmitter, or transceiver. A controller could be configured to determine a predicted relative location of the correspondent balloon. The controller may control the pointing mechanism to adjust the pointing axis of the optical-communication component based on the predicted relative location so as to maintain the free-space optical link with the correspondent balloon.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: March 13, 2018
    Assignee: X Development LLC
    Inventors: Richard DeVaul, Eric Teller, Clifford Biffle, Josh Weaver
  • Patent number: 9915937
    Abstract: Example systems and methods may allow for parallel operation of robotic devices within a workcell, such as industrial robots controlled to manufacture an output product. One example method includes receiving ordered sequences of operations for a plurality of corresponding robotic devices, determining time-based sequences of operations for each of the robotic devices, where a time-based sequence of operations indicates positions within the workcell at corresponding timesteps of a global timeline, determining one or more potential collisions involving the robotic devices that would result from parallel execution of the time-based sequences of operations within the workcell, modifying the time-based sequences of operations in order to prevent the one or more potential collisions, and providing instructions for parallel execution of the modified time-based sequences of operations at timesteps of the global timeline by the robotic devices within the workcell.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 13, 2018
    Assignee: X Development LLC
    Inventors: Jeffrey Linnell, Kendra Byrne