Patents Assigned to Xradia
  • Publication number: 20140233692
    Abstract: A multi energy, such as dual-energy (“DE”), x-ray imaging system data acquisition and image reconstruction system and method enables optimizing the image contrast of a sample. Using the DE x-ray imaging system and its associated user interface applications, an operator performs a low energy (“LE”) and high energy (“HE”) x-ray scan of the same volume of interest of the sample. The system creates a low-energy reconstructed tomographic volume data set from the set of low-energy projections and a high-energy tomographic volume data set from the set of high-energy projections. This enables the operator to control the image contrast of selected slices, and apply the information associated with optimizing the contrast of the selected slice to all slices in the low-energy and high-energy tomographic data sets. This creates a combined volume data set from the LE and HE volume data sets with optimized image contrast throughout.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: XRADIA, INC.
    Inventor: Xradia, Inc.
  • Patent number: 8526575
    Abstract: A compound zone plate comprising a first zone plate frame including a first zone plate, a second zone plate frame including a second zone plate, and a base frame to which the first zone plate frame and the second zone plate frame are bonded. In examples, two more zone plates are added to make a four element optic. In the assembly process, the microbeads are used to ensure the parallelism, dial in the distance precisely between the zone plates by selecting the microbead size, possibly in response to the width of the frames, and ensure low friction lateral movement enabling nanometer precision alignment of the zone plates with respect to each other prior to being fixed by the adhesive. That is, when the frames are pressed together to ensure parallelism, it is still possible to align them to each other since the microbead layer facilitates the inplane movement of the alignment process.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 3, 2013
    Assignee: Xradia, Inc.
    Inventors: Alan Francis Lyon, Michael Feser, Wenbing Yun, Sharon Chen
  • Patent number: 8353628
    Abstract: The position of the sample is measured and used to correct for any off-axis motion during tomography using x-ray projection microscope system with a rotation stage system. The position is sensed using a precision-machined, low-CTE gold-coated cylinder or disc and three to five capacitive distance sensors. The correction can then be performed purely as image processing in software, by applying an appropriate shift in X and Y of the captured x-ray projections. A calibration is often necessary for each system (gold disc plus sensors plus sample stage) to account for any machining errors of the gold disc or positioning errors of the capacitive sensors. This calibration should also be repeated whenever any maintenance is performed on the metrology setup.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 15, 2013
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Ying Xu, Frederick W. Duewer, Mason Freed, Chao-chih Hsu
  • Patent number: 8267388
    Abstract: Alignment assembly is used to center a sample on a moving stage system. The alignment assembly includes a pair of slides stacked on a stage with linear perpendicular movement relative to each other, and at least one actuator that is preferably physically separate from the linear slides and stage. The actuator(s) repeatedly extend an actuator arm to move the linear slides, and retract the arm for subsequent movement of the stage during and after the process of centering the sample in two dimensions on the stage. Either the stage system rotates, or multiple actuators are placed to move the alignment system in perpendicular directions relative to the stage, by repeatedly contacting only the top linear slide.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 18, 2012
    Assignee: Xradia, Inc.
    Inventor: Ying Xu
  • Patent number: 8139846
    Abstract: A method and system for verifying the integrity of integrated circuits (ICs) by detecting the presence of unauthorized circuit insertions or modifications using non-destructive x-ray microscopy is disclosed. A reference image based on a trusted IC or a trusted design file may be generated. An un-trusted IC may be received from an un-trusted foundry, which IC is manufactured in response to the trusted design file provided to the foundry. An x-ray microscope may record a plurality of sets of base images of the un-trusted IC, each set corresponding to a different viewing angle. One or more un-trusted images may be produced from the base images. The reference images may be compared with the un-trusted images to illuminate any additions or modifications in circuit elements or other parameters.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 20, 2012
    Assignees: University of Southern California, Xradia
    Inventors: Michael A. Bajura, John N. Damoulakis, Younes Boulghassoul, Michael P. K. Feser, Andrei V. Tkachuk
  • Patent number: 8068579
    Abstract: A process to determine the porosity and/or mineral content of mineral samples with an x-ray CT system is described. Based on the direct-projection techniques that use a spatially-resolved x-ray detector to record the x-ray radiation passing through the sample, 1 micrometer or better resolution is achievable. Furthermore, by using an x-ray objective lens to magnify the x-ray image in a microscope configuration, a higher resolution of up to 50 nanometers or more is achieved with state-of-the-art technology. These x-ray CT techniques directly obtain the 3D structure of the sample with no modifications to the sample being necessary. Furthermore, fluid or gas flow experiments can often be conducted during data acquisition so that one may perform live monitoring of the physical process in 3D.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: November 29, 2011
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Michael Feser, Andrei Tkachuk, Thomas A. Case, Frederick W. Duewer, Hauyee Chang
  • Patent number: 7974379
    Abstract: A metrology system that uses an imaging system to monitor alignment features on the sample or sample holder of an X-ray laminography or tomography system. the metrology system has the capability to provide both sample shift and sample rotation movement data to a data acquisition system. These shift and rotation data can be used in alignment routines to produce 3D reconstructions from the X-ray images/projections. The metrology system is based on an imaging and focusing measurement of intrinsic feature of the sample or artificial features fabricated on the sample or sample holder.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: July 5, 2011
    Assignee: Xradia, Inc.
    Inventors: Thomas A. Case, Wenbing Yun, Alan Francis Lyon
  • Patent number: 7920676
    Abstract: CD-GISAXS achieves reduced measurement times by increasing throughput using longer wavelength radiation (˜12×, for example) such as x-rays in reflective geometry to increase both the collimation acceptance angle of the incident beams and the scattering signal strength, resulting in a substantial combined throughput gain. This wavelength selection and geometry can result in a dramatic reduction in measurement time. Furthermore, the capabilities of the CD-GISAXS can be extended to meet many of the metrology needs of future generations of semiconductor manufacturing and nanostructure characterization, for example.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 5, 2011
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Yuxin Wang, Srivatsan Seshadri, Kenneth W. Nill
  • Publication number: 20110002528
    Abstract: A method and system for verifying the integrity of integrated circuits (ICs) by detecting the presence of unauthorized circuit insertions or modifications using non-destructive x-ray microscopy is disclosed. A reference image based on a trusted IC or a trusted design file may be generated. An un-trusted IC may be received from an un-trusted foundry, which IC is manufactured in response to the trusted design file provided to the foundry. An x-ray microscope may record a plurality of sets of base images of the un-trusted IC, each set corresponding to a different viewing angle. One or more un-trusted images may be produced from the base images. The reference images may be compared with the un-trusted images to illuminate any additions or modifications in circuit elements or other parameters.
    Type: Application
    Filed: November 5, 2008
    Publication date: January 6, 2011
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, XRADIA
    Inventors: Michael A. Bajura, John N. Damoulakis, Younes Boulghassoul, Michael P.K. Feser, Andrei V. Tkachuk
  • Patent number: 7864426
    Abstract: A method to stabilize planar nanostructures, for example grating and zone plate lenses that are typically used for directing or focusing x-ray radiation, includes the deposition of a top, stabilizing layer. The structures are typically made on a flat substrate, and therefore are only fixed at the bottom. At high aspect ratio, the stability can be poor since small forces such as electrostatic forces and van de Waals forces that are often present can alter the structure. The top coating of a metallic material such as titanium constrains the nanostructures at the top and at the same time eliminates electrostatic forces and reduces any thermal gradient that may be present across the device.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: January 4, 2011
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Alan Francis Lyon, Yan Feng
  • Patent number: 7813475
    Abstract: An x-ray imaging system uses a synchrotron radiation beam to acquire x-ray images and at least one integrated x-ray source. The system has an imaging system including sample stage controlled by linear translation stages, objective x-ray lens, and x-ray sensitive detector system, placed on a fixed optical table and a mechanical translation stage system to switch x-ray sources when synchrotron radiation beam is not available.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 12, 2010
    Assignee: Xradia, Inc.
    Inventors: Ziyu Wu, Wenbing Yun, Peiping Zhu, Yuxin Wang, Qingxi Yuan, Andrei Tkachuk, Wanxia Huang, Michael Feser
  • Patent number: 7800072
    Abstract: A scintillated CCD detector system for imaging x rays uses x-rays having a photon energy in the range of 1 to 20 keV. The detector differs from existing systems in that it provides extremely high resolution of better than a micrometer, and high detection quantum efficiency of up to 95%. The design of this detector also allows it to function as an energy filter to remove high-energy x-rays. This detector is useful in a wide range of applications including x-ray imaging, spectroscopy, and diffraction. The scintillator optical system has scintillator material with a lens system for collecting the light that is generated in the scintillator material. A substrate is used for spacing the scintillator material from the lens system.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: September 21, 2010
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Yuxin Wang, David R. Trapp
  • Patent number: 7796725
    Abstract: An x-ray imaging system uses a synchrotron radiation beam to acquire x-ray images and at least one integrated x-ray source. The system has an imaging system including sample stage controlled by linear translation stages, objective x-ray lens, and x-ray sensitive detector system, placed on a fixed optical table and a mechanical translation stage system to switch x-ray sources when synchrotron radiation beam is not available.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: September 14, 2010
    Assignee: Xradia, Inc.
    Inventors: Ziyu Wu, Wenbing Yun, Peiping Zhu, Yuxin Wang, Qingxi Yuan, Andrei Tkachuk, Wanxia Huang, Michael Feser
  • Patent number: 7787588
    Abstract: The principle of reciprocity states that full-field and scanning microscopes can produce equivalent images by interchanging the roles of condenser and detector. Thus, the contrast transfer function inversion previously used for images from scanning systems can be applied to Zernike phase contrast images. In more detail, a full-field x-ray imaging system for quantitatively reconstructing the phase shift through a specimen comprises a source that generates x-ray radiation, a condenser x-ray lens for projecting the x-ray radiation onto the specimen, an objective x-ray lens for imaging the x-ray radiation transmitted through the specimen, a phase-shifting device to shift the phase of portions of x-ray radiation by a determined amount, and an x-ray detector that detects the x-ray radiation transmitted through the specimen to generate a detected image.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 31, 2010
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Michael Feser, Benjamin Hornberger
  • Patent number: 7561662
    Abstract: A projection x-ray imaging system that possibly utilizes a laboratory-based micro-focused x-ray source is disclosed. Techniques for optimizing the system for high quality, three dimensional image formation with tomographic imaging with the potential for high resolution and high throughput are described. It also concerns ways to optimize the system design to obtain improved image quality.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 14, 2009
    Assignee: Xradia, Inc.
    Inventors: Yuxin Wang, Wenbing Yun, David Dean Scott
  • Patent number: 7535193
    Abstract: A rotating stage assembly performs high precision rotational angle and position error correction by continuous sensing and correcting motor stage assembly errors. It performs these corrections, to adjust for motor environmental and operational errors by sensing and correcting using five sensors placed to measure the adjustments of five corresponding actuators, which adjust the entire motor rotating stage and rotary motor assembly relative to a reference frame.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: May 19, 2009
    Assignee: Xradia, Inc.
    Inventor: Ying Xu
  • Publication number: 20090067976
    Abstract: Alignment assembly is used to center a sample on a moving stage system. The alignment assembly includes a pair of slides stacked on a stage with linear perpendicular movement relative to each other, and at least one actuator that is preferably physically separate from the linear slides and stage. The actuator(s) repeatedly extend an actuator arm to move the linear slides, and retract the arm for subsequent movement of the stage during and after the process of centering the sample in two dimensions on the stage. Either the stage system rotates, or multiple actuators are placed to move the alignment system in perpendicular directions relative to the stage, by repeatedly contacting only the top linear slide.
    Type: Application
    Filed: September 12, 2007
    Publication date: March 12, 2009
    Applicant: XRADIA, INC.
    Inventor: Ying Xu
  • Patent number: 7499521
    Abstract: An imaging technology for fuel cells is based on x-ray microscopy. A metrology system images the electro-chemical interaction areas of solid-oxide fuel cells (SOFC) in-situ. This system takes advantage of both the penetrating power and elemental absorption contrast of hard x-ray radiation to image the internal interaction areas in a SOFC. The technology can further take advantage of the strong dependence of the x-ray absorption on material type and energy to distinguish the four major material types: cathode, electrolyte, air, and low-Z contaminants such as sulfur.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: March 3, 2009
    Assignee: Xradia, Inc.
    Inventors: Yuxin Wang, Wenbing Yun
  • Publication number: 20080309276
    Abstract: A rotating stage assembly performs high precision rotational angle and position error correction by continuous sensing and correcting motor stage assembly errors. It performs these corrections, to adjust for motor environmental and operational errors by sensing and correcting using five sensors placed to measure the adjustments of five corresponding actuators, which adjust the entire motor rotating stage and rotary motor assembly relative to a reference frame.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Applicant: XRADIA, INC.
    Inventor: Ying Xu
  • Publication number: 20080273662
    Abstract: CD-GISAXS achieves reduced measurement times by increasing throughput using longer wavelength radiation (˜12×, for example) such as x-rays in reflective geometry to increase both the collimation acceptance angle of the incident beams and the scattering signal strength, resulting in a substantial combined throughput gain. This wavelength selection and geometry can result in a dramatic reduction in measurement time. Furthermore, the capabilities of the CD-GISAXS can be extended to meet many of the metrology needs of future generations of semiconductor manufacturing and nanostructure characterization, for example.
    Type: Application
    Filed: July 6, 2007
    Publication date: November 6, 2008
    Applicant: XRADIA, INC.
    Inventors: Wenbing Yun, Yuxin Wang, Srivatsan Seshadri, Kenneth W. Nill