Abstract: The disclosure relates to systems, methods and programs for maneuvering unmanned vehicles. More specifically, the disclosure relates to systems, methods and programs for controlling maneuverability of unmanned vehicles (ground, aerial and marine) by coupling vehicle controls with point of regard (PoR) in a 2D plane, translated to a continuously updating flight vector in a 3D space, based on 12 DOF head pose and/or hand gesture of a user.
Abstract: Embodiments of the present disclosure may include a method for optimizing flight of an unmanned aerial vehicle (UAV) including a payload, the method including receiving one or more human-initiated flight instructions. Embodiments may also include determining a UAV context based at least in part on Inertial Measurement Unit (IMU) data from the UAV. Embodiments may also include receiving payload identification data. Embodiments may also include accessing a laden flight profile based at least in part on the payload identification data. Embodiments may also include determining one or more laden flight parameters. In some embodiments, the one or more laden flight parameters may be based at least in part on the one or more human-initiated flight instructions, the UAV context, and the laden flight profile.
Abstract: The disclosure relates to systems, methods and programs for maneuvering unmanned vehicles. More specifically, the disclosure relates to systems, methods and programs for controlling maneuverability of unmanned vehicles (ground, aerial and marine) by coupling vehicle controls with point of regard (PoR) in a 2D plane, translated to a continuously updating flight vector in a 3D space, based on 12 DOF head pose and/or hand gesture of a user.