Patents Assigned to Xtera Communications, Inc.
  • Patent number: 6876489
    Abstract: A Raman amplifier apparatus includes an optical transmission line with an input to receive an optical signal, an output that passes the optical signal, a first Raman gain fiber and a second Raman gain fiber. A first WDM is positioned between the second Raman gain fiber and the output. A first set of pump wavelengths is input to the first WDM. A second WDM is positioned between the first and second Raman gain fibers. A second set of pump wavelengths is input to the second WDM. At least a portion of the first set of pump wavelengths are different than the second set of pump wavelengths. The first and second set of pump wavelengths propagate in the same direction.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: April 5, 2005
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6833946
    Abstract: This invention describes new developments in Sagnac Raman amplifiers and cascade lasers to improve their performance. The Raman amplifier bandwidth is broadened by using a broadband pump or by combining a cladding-pumped fiber laser with the Sagnac Raman cavity. The broader bandwidth is also obtained by eliminating the need for polarization controllers in the Sagnac cavity by using an all polarization maintaining configuration, or at least using loop mirrors that maintain polarization. The polarization maintaining cavities have the added benefit of being environmentally stable and appropriate for turn-key operation. The noise arising from sources such as double Rayleigh scattering is reduced by using the Sagnac cavity in combination with a polarization diversity pumping scheme, where the pump is split along two axes of the fiber. This also leads to gain for the signal that is independent of the signal polarization.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: December 21, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6825973
    Abstract: An optical amplifier includes at least one amplification stage having a saturation recovery time of less than one (1) millisecond. The amplification stage includes a gain medium operable to receive at least one pump signal and to receive from a multiple span communication link an optical signal comprising a leading edge. The at least one pump signal and the optical signal travel in the same direction at approximately the same speed through at least a portion of the gain medium. In one particular embodiment the leading edge of the optical signal after passing through a plurality of amplifiers when received by a receiver coupled to the communication link comprises a peak power that is no more than ten times the average power of the optical signal at the receiver.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: November 30, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Andrej B. Puc, Michel W. Chbat, Jason D. Henrie, Sergey P. Burtsev, Frederic L. Barthelemy, Ned A. Weaver
  • Patent number: 6819479
    Abstract: In one embodiment, an optical amplifier includes a gain medium operable to receive a plurality of signals each having a center wavelength and a noise figure associated with at least a portion of the amplifier and varying as a function of wavelength. At least two of the plurality of signals have launch powers that are a function of a magnitude of the noise figure measured at or near the center wavelength of that signal.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 16, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Michael J. Freeman, Pavle Gavrilovic, Andrzej Kaminski
  • Patent number: 6819478
    Abstract: A fiber optic transmission system with low cost transmitter compensation includes an electro-absorption modulated laser operable to generate an optical signal for transmission over a fiber optic communication link. The system further includes a Raman amplifier stage coupled to the communication link, the Raman amplifier stage having a gain medium including a dispersion compensating fiber. The dispersion compensating fiber is operable to at least partially compensate for a distortion caused by the electro-absorption modulated laser. The Raman amplifier stage is operable to at least partially compensate for a loss associated with the dispersion compensation fiber.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: November 16, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6810214
    Abstract: In one aspect of the invention, a system operable to reduce degradation of an optical signal to noise ratio where signals having multiple wavelengths are communicated over a common optical link includes an amplifier assembly operable to introduce to a lower communication band a first gain and to introduce to a higher communication band a second gain that is different from the first gain. In addition, the system is operable to introduce a variable gain tilt into at least one of the communication bands. The different gains introduced to the higher and lower bands and the variable gain tilt introduced into at least one of the bands result in a reduction of a degradation of optical signal to noise ratio that could otherwise be caused by wavelength dependent attenuation when the communication bands are combined and communicated over an optical link.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: October 26, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Michel W. Chbat, Herve A. Fevrier, Pavle Gavrilovic, Hyunchin Kim, Andrej B. Puc
  • Patent number: 6807197
    Abstract: A nonlinear polarization amplifier stage includes a gain medium operable, to receive a multiple wavelength optical signal. The amplifier stage also includes a pump assembly operable to generate at least one pump wavelength for introduction to the gain medium. The amplifier stage further includes a coupler operable to introduce the at least one pump wavelength to the gain medium to facilitate amplification of at least a portion of the multiple wavelength optical signal through nonlinear polarization. In one particular embodiment, at least a wavelength or an intensity of the at least one pump wavelength is manipulated to affect the shape of a gain curve associated with the multiple wavelength optical signal in the amplifier stage.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: October 19, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6778321
    Abstract: A fiber optic transmission system for a metropolitan area network includes a plurality of interface devices operable to be coupled to a fiber optic transmission link carrying an optical signal and having a length of 300 km or less. The link has a transmission loss associated with an unpumped state of the link, and the plurality of interface devices collectively introduce a loss of at least 6 decibels to the link. The system also includes a distributed Raman amplifier stage coupled to the link, the distributed Raman amplifier stage operable to pump at least a portion of the link to reduce the transmission loss of the at least a portion of the link compared to its unpumped state, the reduced link transmission loss facilitating allocation of at least a portion of a gain to at least partially offset the loss associated with the plurality of interface devices.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 17, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20040130777
    Abstract: A broadband fiber transmission system includes a transmission line with at least one zero dispersion wavelength &lgr;o and transmits an optical signal of &lgr;. The transmission line includes a distributed Raman amplifier that amplifies the optical signal through Raman gain. One or more pump sources are included and operated at wavelengths &lgr;p for generating a pump light to pump the Raman amplifier. &lgr; is close to &lgr;0 and &lgr;0 is less than 1540 nm or greater than 1560 nm.
    Type: Application
    Filed: July 25, 2003
    Publication date: July 8, 2004
    Applicant: Xtera Communications, Inc., a Delaware corporation
    Inventor: Mohammed N. Islam
  • Patent number: 6760148
    Abstract: A broadband fiber transmission system includes a transmission line with at least one zero dispersion wavelength &lgr;o and transmits an optical signal of &lgr;. The transmission line includes a distributed Raman amplifier that amplifies the optical signal through Raman gain. One or more semiconductor lasers are included and operated at wavelengths &lgr;p for generating a pump light to pump the Raman amplifier. &lgr; is close to &lgr;o and &lgr;0 is less than 1540 nm or greater than 1560 nm.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: July 6, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6751371
    Abstract: In one aspect of the invention, a method of managing one or more optical elements includes storing in a memory, provisioning information describing at least one setting of an optical element and monitored information describing at least one operational characteristic of the optical element. At least a portion of the monitored information is correlated with at least a portion of the provisioning information. The method further includes maintaining in the memory, a correlation history comprising the provisioning information stored over time and the monitored information correlated to that provisioning information.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: June 15, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Herve A. Fevrier, Paul D. Pantages, Michel W. Chbat, Anand K. Gonuguntla, Zhi Feng
  • Patent number: 6744553
    Abstract: In one aspect of the invention, an apparatus operable to convert wavelengths of a plurality of optical signals includes a coupler operable to receive a pump signal and a plurality of input signals each input signal comprising at least one wavelength different than the wavelengths of others of the plurality of input optical signals. The apparatus further includes an optical medium operable to receive the pump signal and the plurality of input signals from the couplet, wherein the pump signal and each of the plurality of input signals are synchronized to overlap at least partially during at least a part of the time spent traversing the optical medium to facilitate generation of a plurality of converted wavelength signals each comprising a wavelength that is different than the wavelengths of at least some of the plurality of input signals. Various embodiments can result in low cross-talk and/or low polarization sensitivity.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: June 1, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Carl A. Dewilde
  • Patent number: 6714342
    Abstract: A Raman amplifier assembly includes a Raman amplifier configured to receive a signal from a signal source. The signal travels in an upstream direction in the Raman amplifier. A first pump source is coupled to the Raman amplifier. The first pump source produces a first pump beam that travels in a downstream direction and is counter-propagating relative to the signal. A second pump source is coupled to the Raman amplifier and produces a second pump beam that travels in the upstream direction. The second pump source has an average relative intensity noise of less than −80 dB/Hz.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: March 30, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Michael Freeman
  • Patent number: 6693737
    Abstract: A broadband nonlinear polarization amplifier includes an input port for inputting an optical signal having a wavelength &lgr;. A distributed gain medium receives and amplifiers the optical signal through nonlinear polarization. The distributed gain medium has zero-dispersion at wavelength &lgr;0. A magnitude of dispersion at &lgr; is less than 50 ps/nm-km. One or more semiconductor lasers are operated at wavelengths &lgr;p for generating a pump light to pump the distributed gain medium. An output port outputs the amplified optical signal.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: February 17, 2004
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6646788
    Abstract: A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: November 11, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Carl A. Dewilde
  • Publication number: 20030189750
    Abstract: A Raman amplifier apparatus includes an optical transmission line with an input to receive an optical signal, an output that passes the optical signal, a first Raman gain fiber and a second Raman gain fiber. A first WDM is positioned between the second Raman gain fiber and the output. A first set of pump wavelengths is input to the first WDM. A second WDM is positioned between the first and second Raman gain fibers. A second set of pump wavelengths is input to the second WDM. At least a portion of the first set of pump wavelengths are different than the second set of pump wavelengths. The first and second set of pump wavelengths propagate in the same direction.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 9, 2003
    Applicant: Xtera Communications, Inc., a Delaware corporation
    Inventors: Mohammed N. Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6631028
    Abstract: An in-line broadband amplifier includes at least one input fiber and a WDM splitter coupled to the input fiber. The splitter splits an optical signal into at least a first wavelength and a second wavelength. A transition from a stop band to a pass band of the splitter occurs in 20 nm or less. A Raman amplifier and a rare-earth doped optical amplifier are coupled to the splitter. A WDM combiner is coupled to the Raman amplifier and the rare-earth doped optical amplifier. The WDM combiner combines an optical signal into at least a first wavelength and a second wavelength. A transition from a stop band to a pass band of the combiner occurs in 20 nm or less. An output fiber is coupled to the WDM combiner.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: October 7, 2003
    Assignee: Xtera Communications, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 6631025
    Abstract: A Raman amplifier assembly includes a Raman amplifier configured to receive a signal from a signal source. The signal travels in an upstream direction in the Raman amplifier. A first pump source is coupled to the Raman amplifier. The first pump source produces a first pump beam that travels in a downstream direction and is counter-propagating relative to the signal. A second pump source is coupled to the Raman amplifier and produces a second pump beam that travels in the upstream direction. The second pump source has an average relative intensity noise of less than −80 dB/Hz.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: October 7, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Michael Freeman
  • Patent number: 6618192
    Abstract: An amplifier apparatus includes an optical transmission line with a Raman amplification region that provides a pump to signal power conversion efficiency of at least 20%. The Raman amplification region is configured to amplify a signal with multiple wavelengths over at least a 30 nm range of wavelengths. A pump source is coupled to the optical transmission line. An input optical signal is amplified in the Raman amplification region and an output signal is generated that has at least 100 mW more power than the input optical signal.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: September 9, 2003
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed Islam, Carl Dewilde, Michael Freeman
  • Patent number: 6606187
    Abstract: An apparatus and method are described for exploiting almost the full almost 25 THz of bandwidth available in the low-loss window in optical fibers (from 1430 nm to 1620 nm) using a parallel combination of optical amplifiers. The low-loss window at about 1530 nm-1620 nm can be amplified using erbium-doped fiber amplifiers (EDFAs). However, due to the inherent absorption of the erbium at shorter wavelengths, EDFAs cannot be used below about 1525 nm without a significant degradation in performance. For the low-loss window at approximately 1430-1530 nm, amplifiers based on nonlinear polarization in optical fibers can be used effectively. A broadband nonlinear polarization amplifier (NLPA) is disclosed which combines cascaded Raman amplification with parametric amplification or four-wave mixing. In particular, one of the intermediate cascade Raman order wavelengths &lgr;r should lie in close proximity to the zero-dispersion wavelength &lgr;0 of the amplifying fiber.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: August 12, 2003
    Assignees: The Regents of the University of Michigan, Xtera Communications, Inc.
    Inventors: Mohammed Nazrul Islam, Hayden Henry Harris