Abstract: A method for applying energy to biological tissue. An electromagnetic energy source is directed to apply the energy to a region of the tissue, so as to ablate a portion of the tissue in the region. Preferably, cooling of tissue in the region is initiated subsequent to the ablation.
Abstract: A method for permanently removing hair utilizes the hair shaft and hair ducts to transmit light into the tissue sustaining the hair follicle, thereby permanently destroying or modifying the tissue in a manner which desirably mitigates hair growth. The method includes the steps of covering the patient's skin area with a high reflectance substance so as to substantially protect all skin components other than those sustaining the hair. The hair is optionally shaved or pulled out, and then the skin is illuminated with either a large-area electromagnetic radiation field for simultaneous destruction of multiple hair-follicles, or alternatively with a tightly-focused beam which destroys one hair at a time. Optionally, the beam may be rapidly scanned so as to destroy single hairs quickly in succession. The surrounding skin region is left substantially free of injury. This mitigates pain and enhances post hair removal healing.
Abstract: A method and apparatus is disclosed for fast precise material processing and modification which minimizes collateral damage. Utilizing optimized, pulsed electromagnetic energy parameters leads to an interaction regime which minimizes residual energy deposition. Advantageously, removal of cumulative pulse train residual energy is further maximized through the rapid progression of the ablation front which move faster than the thermal energy diffusion front, thus ensuring substantial removal of residual energy to further minimize collateral thermal damage.