Patents Assigned to Yale University
  • Publication number: 20190347574
    Abstract: According to some aspects, a method is provided of operating a circuit quantum electrodynamics system that includes a physical qubit dispersively coupled to a quantum mechanical oscillator, the method comprising applying a first electromagnetic pulse to the physical qubit based on a number state of the quantum mechanical oscillator, wherein the first electromagnetic pulse causes a change in state of the quantum mechanical oscillator, and applying, subsequent to application of the first electromagnetic pulse, a second electromagnetic pulse to the quantum mechanical oscillator that coherently adds or removes energy from the quantum mechanical oscillator.
    Type: Application
    Filed: February 26, 2016
    Publication date: November 14, 2019
    Applicant: Yale University
    Inventors: Reinier Heeres, Brian Vlastakis, Victor V. Albert, Stefan Krastanov, Liang Jiang, Robert J Schoelkopf III
  • Patent number: 10471059
    Abstract: The present invention provides compositions and methods of inhibiting tyrosine phosphorylation. In one aspect, a composition comprising a low-dosage tyrosine kinase inhibitor, where the low-dosage tyrosine kinase inhibitor decreases tyrosine phosphorylation, is provided. In another aspect, a method for treating cardiovascular disease or condition associated with a RASopathy having aberrant protein tyrosine phosphorylation is described. Methods for treating congenital heart disease associated with Noonan or Noonan syndrome with multiple lentigines and decreasing aberrant levels of Protein Zero-Related (PZR) tyrosyl phosphorylation are also described.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: November 12, 2019
    Assignee: Yale University
    Inventors: Anton Bennett, Jae-Sung Yi
  • Patent number: 10468740
    Abstract: According to some aspects, a quantum mechanical system is provided, comprising a resonator having a plurality of superconducting surfaces and configured to support at least one electromagnetic oscillation mode within a three-dimensional region, wherein the plurality of superconducting surfaces include a first superconducting surface that defines a first plane, and a physical qubit comprising at least one planar component that is planar within the first plane and borders the three-dimensional region.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 5, 2019
    Assignee: Yale University
    Inventors: Zlatko Minev, Kyle Serniak, Ioan Pop, Yiwen Chu, Teresa Brecht, Luigi Frunzio, Michel Devoret, Robert J. Schoelkopf, III
  • Patent number: 10463028
    Abstract: Genetically modified non-human animals expressing human EPO from the animal genome are provided. Also provided are methods for making non-human animals expressing human EPO from the non-human animal genome, and methods for using non-human animals expressing human EPO from the non-human animal genome. These animals and methods find many uses in the art, including, for example, in modeling human erythropoiesis and erythrocyte function; in modeling human pathogen infection of erythrocytes; in in vivo screens for agents that modulate erythropoiesis and/or erythrocyte function, e.g. in a healthy or a diseased state; in in vivo screens for agents that are toxic to erythrocytes or erythrocyte progenitors; in in vivo screens for agents that prevent against, mitigate, or reverse the toxic effects of toxic agents on erythrocytes or erythrocyte progenitors; in in vivo screens of erythrocytes or erythrocyte progenitors from an individual to predict the responsiveness of an individual to a disease therapy.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: November 5, 2019
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Andrew J. Murphy, Sean Stevens, Richard Flavell, Markus Gabriel Manz, Liang Shan
  • Patent number: 10467475
    Abstract: Methods and systems are provided that inventory a plot of trees based on data including one or more (e.g., all) of radar images of the plot, spectral images of the plot (e.g., high resolution images taken by satellite), other data (e.g., elevation, slope, aspect), and actual tree survey data physically collected about the plot and/or another plot having similar characteristics. Although the actual tree survey data collected is typically less than the amount of actual survey data used by prior approaches, the present systems and methods are still capable of inventorying the entire plot with a high degree of confidence (e.g., at least 95% confidence).
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 5, 2019
    Assignee: Yale University
    Inventor: Zachary Parisa
  • Patent number: 10461385
    Abstract: According to some aspects, a circuit is provided comprising a plurality of Josephson junctions arranged in series in a loop, at least one magnetic element producing magnetic flux through the loop, a plurality of superconducting resonators, each resonator coupled to the loop between a different neighboring pair of Josephson junctions of the plurality of Josephson junctions, a plurality of ports, each port coupled to at least one of the plurality of resonators at ends of the resonators opposite to ends at which the resonators are coupled to the loop, and at least one controller configured to provide input energy to each of the plurality of ports that causes the circuit to function as a circulator between the plurality of ports.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 29, 2019
    Assignee: Yale University
    Inventors: Katrina Sliwa, Michael Hatridge, Anirudh Narla, Shyam Shankar, Luigi Frunzio, Robert J. Schoelkopf, III, Michel Devoret
  • Patent number: 10458038
    Abstract: This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 29, 2019
    Assignee: Yale University
    Inventors: Yu Zhang, Qian Sun, Jung Han
  • Patent number: 10457629
    Abstract: The present invention includes DNP derivatives of formula (I) that are useful for preventing or treating a metabolic disease or disorder in a subject in need thereof. In certain embodiments, the subject is further administered at least one additional therapeutic agent.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 29, 2019
    Assignee: Yale University
    Inventors: Gerald I. Shulman, David A. Spiegel
  • Publication number: 20190324028
    Abstract: The present invention relates to a system, device, and method for the high throughput multiplexed detection of a wide number of compounds. The invention comprises of a microwell array coupled to a capture agent array to form a plurality of interfaces between a microwell and a set of immobilized capture agents. The set of capture agents comprises a plurality of distinguishable features, with each feature corresponding to the detection of a particular compound of interest. In certain embodiments, each microwell is configured to contain a single cell. The invention is therefore capable of performing a high throughput analysis of single cell profiles, including profiles of secreted compounds.
    Type: Application
    Filed: March 6, 2019
    Publication date: October 24, 2019
    Applicant: Yale University
    Inventors: Rong Fan, Yao Lu, Jonathan Chen
  • Patent number: 10450570
    Abstract: The invention relates to compositions and methods for reducing excessive vascular development and treat related disorders. In one aspect, the invention provides methods for treating, reducing or inhibiting vascular development in a subject in need thereof. The methods of the invention comprises administering to the subject an effective amount of a HK2 depleting agent that decreases the level of expression and/or activity of HK2. In some embodiments, the level of expression and/or activity of fibroblast growth factor receptor (FGFR), FGF ligand and/or FGF signaling is/are decreased. The invention also includes methods for diagnosing excessive vascular development and for measuring the efficacy of a treatment for an excessive vascular development in a subject in need thereof. The invention further includes a pharmaceutical composition for treating or reducing angiogenesis or lymphangiogenesis, comprising a HK2 depleting agent and a pharmaceutical acceptable carrier.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 22, 2019
    Assignee: Yale University
    Inventors: Michael Simons, Pengchun Yu
  • Patent number: 10435812
    Abstract: Methods are provided for generating a crystalline material. The methods comprise depositing a textured thin film in a growth seed area, wherein the textured thin film has a preferential crystallographic axis; providing a growth channel extending from the growth seed area, the growth channel permitting guided lateral growth; and growing a crystalline material in the growth channel along a direction that is substantially perpendicular to the preferential crystallographic axis of the textured thin film. A preferred crystalline material is gallium nitride, and preferred textured thin films are aluminum nitride and titanium nitride.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 8, 2019
    Assignee: Yale University
    Inventor: Jung Han
  • Patent number: 10433527
    Abstract: The invention relates generally to genetically modified non-human animals expressing human polypeptides and their methods of use.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: October 8, 2019
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Markus Manz, Anthony Rongvaux, Till Strowig, Tim Willinger, Andrew J. Murphy, Sean Stevens, George Yancopoulos
  • Patent number: 10435712
    Abstract: The present invention relates to the discovery of a high titer hybrid-virus vector that gives rise to high titer virus like vesicles (VLVs) that can be used as a vaccine. The invention includes compositions and methods of generating an evolved hybrid-virus vector vaccine and selecting high titer VLVs, methods of treating and/or preventing or immunizing against, a specific disease or disorder, and methods of inducing a memory T cell and B cell immune response in a subject administered the VLV composition produced thereby. Furthermore, the invention encompasses a pharmaceutical composition for vaccinating a subject as well as a high titer protein expression system.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: October 8, 2019
    Assignee: Yale University
    Inventors: John Rose, Nina Rose
  • Patent number: 10432871
    Abstract: Systems and methods are provided for imaging using complex lasers. In general, a complex laser may be used as an electromagnetic source for an imaging application. The use of a lower spatial coherence configured complex laser in imaging applications may advantageously mitigate coherent artifacts in imaging such as cross-talk and speckle and improve overall image quality. Imaging applications where a complex laser may be useful include both incoherent imaging applications, such as digital light projectors and traditional microscopy, and coherent imaging applications, such as optical coherence tomography (OCT) and holography. The systems and methods provided also enable controlling the degree of spatial coherence of a complex laser.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 1, 2019
    Assignee: Yale University
    Inventors: Hui Cao, Brandon Redding, Michael Choma
  • Patent number: 10424212
    Abstract: A computer-implemented method, a computer program product, and a system are provided. A plurality of multi-level cognitive exercises are provided to an individual. Each of the multi-level cognitive exercises includes at least one task to perform. The individual is requested to respond to a cognitive exercise in the plurality of cognitive exercises by performing the at least one task contained in the cognitive exercise. A response provided by the individual to the cognitive exercise is monitored. Based on the monitoring, a determination is made whether the individual performed the at least one task at a predetermined performance level, wherein the performance level is defined by the at least one task contained in the cognitive exercise. Based on the determining, the individual is requested to perform at least another task. At least one activity for the individual to perform is generated. The at least one activity is based on responses to the multi-level cognitive exercises by the individual.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: September 24, 2019
    Assignee: Yale University
    Inventor: Bruce E. Wexler
  • Patent number: 10424711
    Abstract: Some embodiments are directed to a device including multiple substrates comprising one or more troughs. The substrates are disposed such that the one or more troughs form at least one enclosure. At least one superconducting layer covers at least a portion of the at least one enclosure. Other embodiments are directed to a method for manufacturing a superconducting device. The method includes acts of forming at least one trough in at least a first substrate; covering at least a portion of the first substrate with a superconducting material; covering at least a portion of a second substrate with the superconducting material; and bonding the first substrate and the second substrate to form at least one enclosure comprising the at least one trough and the superconducting material.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 24, 2019
    Assignee: Yale University
    Inventors: Robert J. Schoelkopf, III, Teresa Brecht, Luigi Frunzio, Michel Devoret
  • Patent number: 10424712
    Abstract: Some embodiments are directed to a device including multiple substrates comprising one or more troughs. The substrates are disposed such that the one or more troughs form at least one enclosure. At least one superconducting layer covers at least a portion of the at least one enclosure. Other embodiments are directed to a method for manufacturing a superconducting device. The method includes acts of forming at least one trough in at least a first substrate; covering at least a portion of the first substrate with a superconducting material; covering at least a portion of a second substrate with the superconducting material; and bonding the first substrate and the second substrate to form at least one enclosure comprising the at least one trough and the superconducting material.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 24, 2019
    Assignee: Yale University
    Inventors: Robert J. Schoelkopf, III, Luigi Frunzio, Michel Devoret, Teresa Brecht
  • Publication number: 20190276880
    Abstract: This disclosure demonstrates an approach that translates synthetic DNA codes to spatial codes registered in nanoliter microchambers for multiplexed measurement of nearly any type of molecular targets (e.g., miRNAs, mRNAs, intracellular and surface proteins) in single cells.
    Type: Application
    Filed: July 17, 2017
    Publication date: September 12, 2019
    Applicant: Yale University
    Inventors: Rong Fan, Yao Lu, Nayi Wang
  • Patent number: 10407734
    Abstract: The present invention provides compositions and methods of using transposons. In one aspect, methods are disclosed that are useful for identifying negatively selected genes in an insertional mutagenesis screen. In another aspect, compositions for reducing proliferation of a tumor cell expressing an oncogenic RAS include an activator of a WNT pathway. Pharmaceutical compositions for reducing proliferation of tumor cells in a subject in need thereof by administering an effective amount of an activator of a WNT pathway to the tumor cells of the subject are also disclosed.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: September 10, 2019
    Assignee: Yale University
    Inventors: Tian Xu, Feng Qian, Sean Landrette
  • Patent number: 10398765
    Abstract: The present invention relates to the discovery that inhibition of Dickkopf2 (DKK2) increases CD8+ cytotoxic T lymphocyte (CTL) activity, attenuates tumor angiogenesis, and hence suppresses tumor formation. Thus, in various embodiments described herein, the methods of the invention relate to methods of treating cancer by administering to a patient an effective amount of DKK2 gene depleting agent, methods for providing anti-tumor immunity and anti-tumor angiogenesis in a subject, methods of stimulating a T cell mediated immune response to a cell population or a tissue and suppressing tumor angiogenesis in a subject. Additionally, the current invention includes methods of diagnosing a cancer or a predisposition of developing a cancer or a metastasis and methods for determining the use of immunotherapy treatment or cancer vaccine for treating cancer. Furthermore, the invention encompasses a pharmaceutical composition for treating cancer as well as a kit for carrying out the aforementioned methods.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 3, 2019
    Assignee: Yale University
    Inventors: Dianqing Wu, Le Sun