Abstract: A control method based on an adaptive neural network model for dissolved oxygen of an aeration system includes: obtaining related water quality monitoring data of a sewage treatment plant, and performing data preprocessing on the related water quality monitoring data; performing principal component analysis on the preprocessed related water quality monitoring data and a dissolved oxygen concentration of the aeration system through a principal component analysis method, and determining a water quality parameter with a highest rate of contribution to a principal component; taking the water quality parameter with the highest rate of contribution to the principal component, and predicting a dissolved oxygen concentration of the aeration system; and optimizing a dissolved oxygen predictive value obtained by means of the adaptive neural network model to obtain an optimal regulation value, and performing online regulation on a fuzzy control system of the adaptive neural network model.
Type:
Grant
Filed:
October 27, 2022
Date of Patent:
July 25, 2023
Assignees:
Yancheng Institute Of Technology, YCIT Technology Transfer Center Co., Ltd.
Abstract: The present disclosure discloses a CO2 quantitative fluorescent sensing material, a preparation method and an application thereof. The preparation method for the CO2 quantitative fluorescent sensing material includes dissolving 9,10-diacrylic anthracene in a solvent to prepare 5-10 mg/mL of a first solution; dissolving MnCl2 or Mn(ClO4)2 in water to prepare 50-100 mg/mL of a second solution; mixing the first solution and the second solution; adding a diluted acid into the mixed solution; sealing and heating the mixed solution. This preparation method is simple. During application, an ionic liquid produced by a reaction of CO2 gas and an amine compound improves an aggregation-induced emission of the CO2 quantitative fluorescent sensing material and a fluorescence thereof is significantly improved. So that a fluorescent CO2 quantification is performed rapidly and accurately.
Abstract: An automobile cornering rollover prevention control system includes a controller, four hydraulic oil cylinders, a deflection measuring instrument and a rotation speed measuring instrument. The controller is mounted inside the automobile, and includes a data acquisition module, a data processing module and a data execution module, wherein the data acquisition module and the data execution module are connected to the data processing module, an input end of the data acquisition module is electrically connected to the deflection measuring instrument and the rotation speed measuring instrument, and an output end of the data execution module is connected to control ends of the four hydraulic oil cylinders respectively.
Abstract: A vehicle rear wheel steering assist control system is provided where a wheel deflection angle measuring instrument is mounted at a front wheel for measuring a steering angle of the front wheel, a rotational velocity measuring instrument is also mounted at the front wheel for testing a velocity of the front wheel, output ends of the wheel deflection angle measuring instrument and the rotational velocity measuring instrument are electrically connected to the data acquisition module, the data acquisition module is electrically connected to the controller, the controller is electrically connected to a data execution module, the rear wheel active steering device is mounted at a rear wheel of the automobile, the rear wheel active steering device is electrically connected to the data execution module, the controller is electrically connected to an ECU of the automobile, each automobile seat is provided with a weight sensor, which are electrically connected to the controller.
Abstract: By measuring speeds and deflection angles of two front wheels in real time, and according to values of gravity sensors at four wheel axles, and an axle base and a wheel base of an automobile, a center of gravity of the automobile is determined; moving speeds of the left and right front wheels of the automobile around an instantaneous center during cornering are converted into moving speeds at the center of gravity of the automobile respectively, and an average value of the two automobile speeds at the center of gravity of the automobile is taken as an actual driving speed of the vehicle during cornering; meanwhile, an automobile speed may be controlled according to force conditions of four wheels.