Patents Assigned to Zimmer Spine, Inc.
  • Patent number: 9636148
    Abstract: A polyaxial bone anchor including a housing, a bone screw, and a retainer for pivotably coupling the head of the bone screw to the housing. The retainer is positioned into the bore of the housing and includes a plurality of alternating tabs and slots circumferentially arranged to define a cavity for receiving the head portion of the bone screw therein. The retainer is axially moveable in the housing from a first position in which the head portion is not passable through the lower opening of the retainer to a second position in which the head portion is passable through the lower opening of the retainer.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 2, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Alan E Shluzas, Hugh D Hestad
  • Patent number: 9636150
    Abstract: A spinal stabilization system may include a pair of structural members coupled to at least a portion of a human vertebra with connectors. Connectors may couple structural members to spinous processes. Some embodiments of a spinal stabilization system may include fasteners that couple structural members to vertebrae. In some embodiments, a spinal stabilization system, provides three points of fixation for a single vertebral level. A fastener may fixate a facet joint between adjacent vertebrae and couple a stabilization structural member to a vertebra. Connectors may couple the structural members to the spinous processes of the vertebrae. Use of a spinal stabilization system may improve the stability of a weakened or damaged portion of a spine. When used in conjunction with an implant or other device, the spinal stabilization system may immobilize vertebrae and allow for fusion of the implant or other device with vertebrae.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 2, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Margaret E. Mitchell, Michael E. Landry, Stephen H. Hochschuler, Richard D. Guyer
  • Patent number: 9622735
    Abstract: A surgical access system for accessing a surgical target site within a spine includes a retractor and an elongated element. The refractor has a closed configuration defining a lumen with an internal circumference, and an open configuration in which the internal circumference, at least at the distal end of the retractor, is enlarged relative to said closed configuration. The open configuration creates and maintains an operative corridor to said target site. The elongated element is releasably coupled to an interior wall of the retractor and has an extension extending distal of the distal end of the retractor into the surgical target site. When coupled to the retractor, the elongated element covers a body structure at the target site without blocking access to the operative corridor.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: April 18, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: James J. Pagliuca, John D. Unger, Thomas Davison
  • Patent number: 9603631
    Abstract: A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient Bone fastener assemblies may be coupled to vertebrae Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and/or angulated relative to the bone fastener. Detachable members may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The detachable members may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: March 28, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Michael E. Landry, Larry T. Khoo, Erik J. Wagner, Charles R. Forton, Robert J. Jones
  • Patent number: 9579140
    Abstract: A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient. Bone fastener assemblies may be coupled to vertebrae. Each bone fastener assembly may include a bone fastener and a collar. Extenders may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The extenders may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars. An adjuster may be used in conjunction with the extenders to change a separation distance between the bone fastener assemblies.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Robert J. Jones, Charles R. Forton
  • Patent number: 9549765
    Abstract: A uniplanar bone anchor including a housing and a bone screw is provided. The lower region of the housing defines mating elements that mate with engaging elements on the bone screw to limit movement of the housing relative to the bone screw to a single plane.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 24, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Krishna C. Vedula, Hugh Hestad, Jason Piehl, David Nuckley, Jeremy Lemoine
  • Patent number: 9539012
    Abstract: In some embodiments, a spinal stabilization system may be formed in a patient using quick-connect sleeve assemblies. Each quick-connect sleeve assembly can be coupled to a bone fastener assembly in a fast and intuitive way. In one embodiment, a quick-connect sleeve assembly has a detachable member and a movable member. Both members engage a collar of the bone fastener assembly. In one embodiment, the engagement can be locked via one or more locking features to facilitate screwing a bone fastener of the bone fastener assembly onto a vertebral body in a minimally invasive surgical procedure. Each quick-connect sleeve assembly has a low profile and is particularly shaped for minimally invasive entry.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: January 10, 2017
    Assignee: ZIMMER SPINE, INC.
    Inventors: Michael E. Landry, Larry T. Khoo, Charles R. Forton, Brian J. Bergeron, Bruce A. Riceman, Peter T. Miller, Kameron Scott Ely
  • Patent number: 9532810
    Abstract: A polyaxial bone anchor including a housing and a bone screw. A bottom surface of the housing includes an aperture that defines an angulation limit of the bone screw for each azimuthal angle around a longitudinal axis of the housing. The aperture is V-shaped, with the V-shape having converging side walls that define a low-angulation direction near their intersection and a high-angulation direction opposite the low-angulation direction. In some cases, the angulation limit of the bone screw is generally constant over a range of azimuthal angles centered around the high-angulation direction. The housing may be modular, including tabs on one component that are plastically deformed to engage a lip on another component. During assembly, a mandrel advances longitudinally along a bore in the housing, and forces the tabs radially outward toward the lip to a radially outward plastically deformed state.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: January 3, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Hugh D Hestad, Jack A Dant, Eric J Lundequam, Eric P Jerke, Deborah Lynn Hoch
  • Patent number: 9468475
    Abstract: A system for installing a vertebral stabilization system. The system includes an installation tool including a handle portion and a shaft extending distally from the handle portion. The shaft includes a conduit and a staple mechanism. The system also includes a flexible implant member extending along the conduit configured to be advanced out from a distal end of the shaft, and a staple housed in the staple mechanism. The staple is configured to secure the flexible implant member to a vertebra. The handle portion is configured to selectively advance the flexible implant member from the shaft and to selectively actuate the staple mechanism.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: October 18, 2016
    Assignee: Zimmer Spine, Inc.
    Inventor: Hugh D. Hestad
  • Patent number: 9445849
    Abstract: Embodiments disclosed herein provide compression/distraction methods and tools useful for fitting a spinal stabilization system in a patient through minimally invasive surgery. The spinal stabilization system may comprise screws anchored in vertebrae. The vertebrae may need to be compressed or distracted. One embodiment of an instrument disclosed herein may comprise a shaft for engaging one of the screws through an extender sleeve. A driver may engage another screw through an opening of the instrument. Through this engagement, a surgeon may use the rack and pinion of the instrument to compress or distract one or more levels of the vertebrae in a parallel motion, which can be advantageous clinically in certain situations.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: September 20, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Emily E. King, Bruce A. Riceman, Charles R. Forton, Peter Thomas Miller
  • Patent number: 9439687
    Abstract: A system and associated method are provided for mechanically fixating a region of a skull to a portion of a spine. A plate is provided to contact a region of a skull and be secured thereto. A spinal rod is configured to extend from a location adjacent the plate to a location adjacent at least one vertebra. An adjustable housing is provided to secure the rod to the plate, and has a first position wherein the relative position of the rod to the plate can be adjusted and a second position wherein the relative position of the rod to the plate is secured.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 13, 2016
    Assignee: Zimmer Spine, Inc.
    Inventor: Jeremy Lemoine
  • Patent number: 9439779
    Abstract: A composite interbody vertebral implant for facilitating fusion of adjacent vertebrae. The implant includes a first endplate of a porous metal material and a second endplate of a porous metal material which are configured to allow bone in-growth. The implant also includes a polymeric body positioned between and bonded to the first and second endplates such that polymeric material of the polymeric body is impregnated into pores of the first and second endplates to bond the components together. The implant may include a cavity extending through the composite implant configured to receive bone growth material to facilitate fusion between a first vertebra and a second vertebra.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: September 13, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Kai Zhang, Christopher J. Valois, Zhibin Fang, Jeffrey A. Bassett, Steven A. Zawadzki, David C. Kirt, Steven E. Spangle
  • Patent number: 9414937
    Abstract: A spinal implant for stabilizing first and second vertebrae. The spinal implant includes an intervertebral spacer and a bone stabilization member configured to be coupled to the intervertebral spacer. The bone stabilization member includes a plurality of bone screw openings and a plurality of bone screws extendable through the bone screw openings to secure the bone stabilization member to the vertebrae. A retention member, which is slidably coupled to the bone stabilization member, is linearly slidable between a first position and a second position while coupled to the bone stabilization member. In the first position, each of the bone screws is permitted to be inserted into the bone screw openings, and in the second position the retention member at least partially covers each of the bone screw openings to prevent a bone screw from backing out of the respective bone screw opening.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 16, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Daniel A. Carlson, Gregory A. Mednikov, Eric W. Morris
  • Patent number: 9358060
    Abstract: A driver instrument for engaging and transferring rotational torque to a bone anchor already screwed into a bony structure. The driver instrument may be advanced through an incision while disengaged from the bone anchor and thereafter engaged in a driver socket of the bone anchor. The driver instrument includes an elongate shaft extending distally from a handle, a tapered distal tip, and a driver engagement feature located proximally of the tapered distal tip. The tapered distal tip and the driver engagement feature are configured such that the longitudinal rotational axis of the driver instrument automatically moves into parallel alignment with the longitudinal rotational axis of the bone anchor as the driver engagement feature of the driver instrument is advanced into the driver socket of the bone anchor.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: June 7, 2016
    Assignee: Zimmer Spine, Inc.
    Inventor: Eric P. Jerke
  • Patent number: 9345586
    Abstract: An instrument for use in a procedure for inserting a spinal implant between human vertebrae may include a shaft and an end member. The end member may rotate with respect to the shaft. An angle of the end member with respect to the shaft may be varied when the end member is in a disc space between the human vertebrae. The instrument may include a slide for securing the end member at selected angles relative to the shaft. The end member may be separable from the shaft when the end member is in a selected orientation with the shaft. An instrument kit may include a shaft assembly and modular end members for various steps in a surgical procedure, such as disc space preparation, disc space evaluation, and spinal implant insertion.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 24, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Margaret M. Hunt, Anthony P. Moreno, Scott A. Webb
  • Patent number: 9339299
    Abstract: A vertebral column correction system for correcting a spinal deformity without fusing the joint segments is disclosed. The vertebral column correction system may have first and second vertebral anchors secured to first and second vertebrae. The vertebral column correction system may further comprise one or more intermediate vertebral anchors secured to vertebrae between the first and second vertebrae. A connection member may be disposed within a head portion of the vertebral anchors. At least a portion of the connection member may be a flexible member, such as a flexible cord, configured for tensioning between at least two vertebral anchors for providing a desired amount of tension to apply a correctional force to the spinal column. A spring member, or other tensioning member, may maintain the tension of the connection member.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: May 17, 2016
    Assignee: Zimmer Spine, Inc.
    Inventor: Hugh D. Hestad
  • Patent number: 9289244
    Abstract: A polyaxial bone anchor including a housing and a bone screw. A bottom surface of the housing includes an aperture that defines an angulation limit of the bone screw for each azimuthal angle around a longitudinal axis of the housing. The aperture is V-shaped, with the V-shape having converging side walls that define a low-angulation direction near their intersection and a high-angulation direction opposite the low-angulation direction. In some cases, the angulation limit of the bone screw is generally constant over a range of azimuthal angles centered around the high-angulation direction. The housing may be modular, including tabs on one component that are plastically deformed to engage a lip on another component. During assembly, a mandrel advances longitudinally along a bore in the housing, and forces the tabs radially outward toward the lip to a radially outward plastically deformed state.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 22, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Hugh D. Hestad, Jack A. Dant, Eric J. Lundequam, Eric P. Jerke, Deborah L. Hoch
  • Patent number: 9277940
    Abstract: A method of inserting a spinal stabilization system into a patient generally comprises inserting a first positioning tool through a first location on a patient's skin and along a path generally toward a first vertebral anchor, coupling an end of the first positioning tool to the first vertebral anchor, positioning at least a portion of a delivery device over a connecting element, and inserting the delivery device and the connecting element through the patient's skin at the first location and along at least a portion of the first positioning tool. The first positioning tool is configured to facilitate directing the delivery device and connecting element generally toward a second vertebral anchor within the patient's body.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 8, 2016
    Assignee: Zimmer Spine, Inc.
    Inventors: Mark Darst Rice, Emmanuel Zylber
  • Patent number: 9220541
    Abstract: A transverse connector for coupling between first and second elongate members of a spinal stabilization system. The transverse connector includes a connector arm, a first coupling assembly proximate a first end of the arm, and a second coupling assembly proximate a second end of the arm. The first and second coupling assemblies are secured to the connector arm through a plurality of mating engagement features, such as dovetail grooves.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: December 29, 2015
    Assignee: Zimmer Spine, Inc.
    Inventors: Jack A. Dant, Deborah L. Hoch, Eric P. Jerke, Eric J. Lundequam
  • Patent number: 9198695
    Abstract: A polyaxial bone anchor including a housing, a bone screw, and a retainer for pivotably coupling the head of the bone screw to the housing. The retainer is positioned into the bore of the housing and includes a plurality of alternating tabs and slots circumferentially arranged to define a cavity for receiving the head portion of the bone screw therein. The retainer is axially moveable in the housing from a first position in which the head portion is not passable through the lower opening of the retainer to a second position in which the head portion is passable through the lower opening of the retainer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 1, 2015
    Assignee: Zimmer Spine, Inc.
    Inventors: Alan E. Shluzas, Hugh D. Hestad