Patents Assigned to Zond, Inc.
-
Patent number: 9771648Abstract: A sputtering apparatus includes a chamber for containing a feed gas. An anode is positioned inside the chamber. A cathode assembly comprising target material is positioned adjacent to an anode inside the chamber. A magnet is positioned adjacent to cathode assembly. A platen that supports a substrate is positioned adjacent to the cathode assembly. An output of the power supply is electrically connected to the cathode assembly. The power supply generates a plurality of voltage pulse trains comprising at least a first and a second voltage pulse train. The first voltage pulse train generates a first discharge from the feed gas that causes sputtering of a first layer of target material having properties that are determined by at least one of a peak amplitude, a rise time, and a duration of pulses in the first voltage pulse train.Type: GrantFiled: April 14, 2007Date of Patent: September 26, 2017Assignee: ZOND, INC.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Publication number: 20170029936Abstract: Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-Ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.Type: ApplicationFiled: July 26, 2016Publication date: February 2, 2017Applicant: Zond, Inc.Inventor: Roman Chistyakov
-
Publication number: 20170029937Abstract: A sputtering apparatus includes a chamber for containing a feed gas. An anode is positioned inside the chamber. A cathode assembly comprising target material is positioned adjacent to an anode inside the chamber. A magnet is positioned adjacent to cathode assembly. A platen that supports a substrate is positioned adjacent to the cathode assembly. An output of the power supply is electrically connected to the cathode assembly. The power supply generates a plurality of voltage pulse trains comprising at least a first and a second voltage pulse train. The first voltage pulse train generates a first discharge from the feed gas that causes sputtering of a first layer of target material having properties that are determined by at least one of a peak amplitude, a rise time, and a duration of pulses in the first voltage pulse train.Type: ApplicationFiled: July 29, 2016Publication date: February 2, 2017Applicant: Zond, Inc.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Publication number: 20140238844Abstract: A plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. A pulsed power supply comprising at least two solid state switches and having an output that is electrically connected between the anode and the cathode assembly generates voltage micropulses. A pulse width and a duty cycle of the voltage micropulses are generated using a voltage waveform comprising voltage oscillation having amplitudes and frequencies that generate a strongly ionized plasma.Type: ApplicationFiled: May 6, 2014Publication date: August 28, 2014Applicant: ZOND, INC.Inventor: Roman Chistyakov
-
Patent number: 8125155Abstract: Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.Type: GrantFiled: August 27, 2010Date of Patent: February 28, 2012Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Publication number: 20110133651Abstract: A plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. A pulsed power supply comprising at least two solid state switches and having an output that is electrically connected between the anode and the cathode assembly generates voltage micropulses. A pulse width and a duty cycle of the voltage micropulses are generated using a voltage waveform comprising voltage oscillation having amplitudes and frequencies that generate a strongly ionized plasma.Type: ApplicationFiled: January 20, 2011Publication date: June 9, 2011Applicant: ZOND, INC.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Patent number: 7898183Abstract: A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.Type: GrantFiled: December 31, 2009Date of Patent: March 1, 2011Assignee: Zond, Inc.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Publication number: 20110019332Abstract: Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.Type: ApplicationFiled: August 27, 2010Publication date: January 27, 2011Applicant: ZOND, INC.Inventor: Roman Chistyakov
-
Publication number: 20100326815Abstract: Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.Type: ApplicationFiled: September 10, 2010Publication date: December 30, 2010Applicant: ZOND, INC.Inventor: Roman Chistyakov
-
Publication number: 20100270144Abstract: A plasma source includes a chamber for containing a feed gas. An anode is positioned in the chamber. A segmented magnetron cathode comprising a plurality of electrically isolated magnetron cathode segments is positioned in the chamber proximate to the anode. A power supply is electrically connected to an electrical input of a switch. A respective one of the plurality of electrical outputs of the switch is electrically connected to a respective one of the plurality of magnetron cathode segments. The power supply generates a train of voltage pulses that ignites a plasma from the feed gas. Individual voltage pulses in the train of voltage pulses are routed by the switch in a predetermined sequence to at least two of the plurality of magnetron cathode segments.Type: ApplicationFiled: June 21, 2010Publication date: October 28, 2010Applicant: ZOND, INC.Inventor: Roman Chistyakov
-
Patent number: 7811421Abstract: Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.Type: GrantFiled: July 18, 2005Date of Patent: October 12, 2010Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Patent number: 7808184Abstract: Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.Type: GrantFiled: August 18, 2006Date of Patent: October 5, 2010Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Patent number: 7750575Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.Type: GrantFiled: October 3, 2008Date of Patent: July 6, 2010Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Publication number: 20100101935Abstract: A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.Type: ApplicationFiled: December 31, 2009Publication date: April 29, 2010Applicant: ZOND, INC.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Patent number: 7663319Abstract: A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.Type: GrantFiled: April 22, 2007Date of Patent: February 16, 2010Assignee: Zond, Inc.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Publication number: 20090321249Abstract: A sputtering apparatus includes a chamber for containing a feed gas. An anode is positioned inside the chamber. A cathode assembly comprising target material is positioned adjacent to an anode inside the chamber. A magnet is positioned adjacent to cathode assembly. A platen that supports a substrate is positioned adjacent to the cathode assembly. An output of the power supply is electrically connected to the cathode assembly. The power supply generates a plurality of voltage pulse trains comprising at least a first and a second voltage pulse train. The first voltage pulse train generates a first discharge from the feed gas that causes sputtering of a first layer of target material having properties that are determined by at least one of a peak amplitude, a rise time, and a duration of pulses in the first voltage pulse train.Type: ApplicationFiled: September 4, 2009Publication date: December 31, 2009Applicant: ZOND, INC.Inventors: Roman Chistyakov, Bassam Hanna Abraham
-
Patent number: 7604716Abstract: Methods and apparatus for generating a strongly-ionized plasma are described. An apparatus for generating a strongly-ionized plasma according to the present invention includes an anode and a cathode that is positioned adjacent to the anode to form a gap there between. An ionization source generates a weakly-ionized plasma proximate to the cathode. A power supply produces an electric field in the gap between the anode and the cathode. The electric field generates excited atoms in the weakly-ionized plasma and generates secondary electrons from the cathode. The secondary electrons ionize the excited atoms, thereby creating the strongly-ionized plasma.Type: GrantFiled: July 22, 2004Date of Patent: October 20, 2009Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Publication number: 20090032191Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.Type: ApplicationFiled: October 3, 2008Publication date: February 5, 2009Applicant: ZOND, INC.Inventor: Roman Chistyakov
-
Patent number: 7446479Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.Type: GrantFiled: April 7, 2004Date of Patent: November 4, 2008Assignee: Zond, Inc.Inventor: Roman Chistyakov
-
Patent number: 7345429Abstract: Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.Type: GrantFiled: March 15, 2006Date of Patent: March 18, 2008Assignee: Zond, Inc.Inventor: Roman Chistyakov